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An extended theoretical framework for the continuous population approach to
forest inventories is derived. Here, we treat a simultaneous selection of sam-
ple points with any prescribed sampling intensity over a continuous population.
Different ways to use available auxiliary information, for example, from remote
sensing, by selection of approximately balanced or spatially balanced samples
are considered. A large data set of spatially continuous individual tree-level
data is used to demonstrate the potential of these theoretical approaches. This
study shows new ways to integrate remote sensing information in designs for
forest inventory applications, which can significantly reduce the variance of
the Horvitz–Thompson estimator for target variables related to the auxiliary
information.
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1 INTRODUCTION

When sampling forest or other natural resources, where discrete population elements are distributed spatially over the
landscape, it can often be a natural choice to apply a continuous population approach to survey sampling (Gregoire &
Valentine, 2008, chapter 10). A main reason for using an areal sampling frame, which consists of infinitely many point
locations, is that it may be impossible to compile a suitable list frame of units or clusters of units (Gregoire & Valentine,
2008, p. 207). The typical setup in forest inventories is that sample locations are selected by some sampling designs and
that, at each location, a certain response design is applied to select a number of trees into the sample. Applying standard
sampling theory, this setup leads to logical inconsistencies (Mandallaz, 1991, p. 31). Further, the same tree can be selected
multiple times from different locations, and there are problems due to the spatial structure of the population because
a tessellation of the study area in non-overlapping elements is impossible in many of the standard response designs
(de Vries, 1986; Mandallaz, 1991).

By applying a continuous population approach, it becomes necessary that attribute densities can be observed at any
point location in the study area. Therefore, the attributes of discrete population elements need to be made continuous.
In forest inventories, the standard approach to derive such a surface of an attribute is the application of the inclusion
zone concept. It was first presented by Grosenbaugh (1952) in connection with horizontal point sampling that includes
trees into a sample proportional to their stem diameter. Grosenbaugh and Stover (1957) later described trees surrounded
by imaginary rings proportional to tree diameter (point or relascope sampling) for illustration. Mandallaz (1991) was the
first to present a unified approach of sampling theory for forest inventories based on infinite populations and use the
term support areas. Later, the term inclusion area was introduced (Schreuder, Gregoire, & Wood, 1993, p. 114), which
eventually evolved into inclusion zones. In general, the inclusion zone is a geometrical construct that is useful for deriving
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inclusion probabilities of individual population units. Each population unit has its own inclusion zone with size and
shape depending on the respective response design used for selecting trees into the sample at a given sample location.
Inclusion zones are constructed in such a way that any point selected from within a unit's inclusion zone would select
this unit into the sample. A comprehensive treatise of the inclusion zone concept for various response designs common
in surveys of natural resources was given by Gregoire and Valentine (2008).

To create a continuous population from discrete population units, the units' attributes are spread over the area of the
inclusion zones to create an attribute density, for example, kilogram of dry biomass per unit area. As inclusion zones do
naturally overlap to some degree, attribute densities are summed up at overlapping locations to create an attribute surface.
Such an alternative view of forest sampling was first described in Roesch, Green, and Scott (1993), and figures of attribute
or response surfaces can be found in Fehrmann, Gregoire, and Kleinn (2012).

Having defined the attribute density, we can apply point sampling. Estimation is based on a prescribed sampling inten-
sity function and the attribute density function. The sampling intensity function has the property that when integrated
over any area, it gives the expected number of sample points that will fall into that area. In the current study, we extend
the continuous population approach for forest inventories by introducing balanced and spatially balanced sampling
within this framework. The auxiliary information, used to balance the samples, becomes available for use in the design
by a double sampling procedure. To achieve approximately balanced samples where Horvitz–Thompson (HT) estimates
of auxiliary totals are approximately equal to the corresponding population totals, we utilised the cube method (CM).
The CM was introduced for finite populations by Deville and Tillé (2004). We also show how the local pivotal method
(LPM), introduced by Grafström, Lundström, and Schelin (2012), can be applied for selecting samples that are well spread
(spatially balanced) in the space of the auxiliary information. The LPM has been shown to be among the best designs for
spreading samples in auxiliary spaces (Benedetti, Piersimoni, & Postiglione, 2015; Grafström & Ringvall, 2013; Grafström,
Saarela, & Ene, 2014; Grafström & Schelin, 2014).

In Section 2, we introduce notation and the theoretical foundations for the continuous population approach to forest
inventories. The setting and notation for auxiliary information are provided in Section 3. Our suggested procedures for
double sampling are presented in Section 4. A simulation example with real data is provided in Section 5. This paper ends
with a discussion in Section 6.

2 CONTINUOUS POPULATION APPROACH

The finite population of interest is located on a subset F ⊂ R2 of the Euclidean plane with area 𝓁(F). Here, the finite pop-
ulation UT = {1, 2, … ,NT} consists of NT objects (trees) represented as points in the continuous population F. We wish
to estimate some characteristic of the finite population, usually a population total, by the means of a probability sample.
Circle plot inventories are commonly used for this purpose, and we examine some different possibilities to sample such
a population under a continuous population approach with possibly variable intensity and in the presence of auxiliary
information.

Let ST ⊂ UT denote the random sample of identifiers. We define Si as the number of inclusions of object i. The inclusion
probability of object i is 𝜋i = Pr(i ∈ ST), and we let Ei = E(Si) denote the expected number of inclusions. The variable
of interest, which is usually nonnegative and bounded, is denoted by yi, and thus, for the finite population, we wish to
estimate Y =

∑NT
i=1 yi. Due to the lack of a sampling frame (list) of the units in UT, they cannot be sampled directly. Instead,

we select our sample from the continuous population F.
Following Cordy (1993), a sampling design of fixed size n on F is defined by a joint distribution of n random vari-

ables. These n random variables are random locations within F, and the sample of these n locations is denoted by
SF = {x1, x2, … , xn}. The marginal probability density function (pdf) of xi is denoted by fi(x), and the joint pdf of
xi, xj, i ≠ j is denoted by fij(x, x′). The sampling intensity is

𝜋(x) =
n∑

i=1
fi(x).

We require that 𝜋(x) > 0 for x ∈ F (and 𝜋(·) = 0 outside of F). We have n = ∫F𝜋(x)dx, for a design of fixed size n. The
second order sampling intensity for x, x′ ∈ F is defined by

𝜋(x, x′) =
n∑

i=1

∑
j≠i

fij(x, x′).
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Each object i ∈ UT has an inclusion zone Ki ⊂ F, so that object i is included if a sample point falls within Ki. In circle
plot inventories, Ki is the intersection of F and a circle centred at the location of object i. Let Ii(x) be equal to 1 if x ∈ Ki
and 0 otherwise. The number of inclusions of object i can then be written as Si =

∑
x∈SF

Ii(x), with expected value

E(Si) = Ei = ∫Ki

𝜋(x)dx = ∫F
Ii(x)𝜋(x)dx.

The density function Y(x) of the target variable on F can be defined in different ways. We give two alternatives for the
density. The first one is

Y (x) =
∑
i∈UT

Ii(x)yi

𝓁(Ki)
, (1)

where the sum of the yis is divided by the area of the respective inclusion zone on the selected plot or cluster.
Thus, Y(x) is a per-area density of the target variable (e.g., volume/area). This density has been used, for example,
by Mandallaz (2007, p. 56). The density is constructed so that Y = ∫FY (x)dx is identical to the corresponding finite
population parameter

∑
i∈UT

yi. This follows from

Y = ∫F
Y (x)dx = ∫F

∑
i∈UT

Ii(x)yi

𝓁(Ki)
dx =

∑
i∈UT

yi

𝓁(Ki)∫F
Ii(x)dx =

∑
i∈UT

yi.

As the yis are finite and all 𝓁(Ki) are strictly positive, Fubini's theorem allows changing the order of summation and
integration in the previous equation.

The second density, which to our knowledge has not previously been used, is given by

Y∗(x) =
∑
i∈UT

Ii(x)𝜋(x)yi

Ei
. (2)

In the second density, the inclusion of object i through a point x ∈ Ki is weighted by the design likelihood of the point
x ∈ Ki. Also, for the second density, we have

Y = ∫F
Y∗(x)dx = ∫F

∑
i∈UT

Ii(x)𝜋(x)yi

Ei
dx =

∑
i∈UT

yi

Ei ∫F
Ii(x)𝜋(x)dx =

∑
i∈UT

yi.

In the case of a constant sampling intensity with n selected points, 𝜋(x) = n∕𝓁(F ) and Equation 2 is equal to Equation 1
as Ei = n∕𝓁(F ) · 𝓁(Ki). To see some difference between using the two densities, we first need to look at the continuous
version of the HT estimator, which is given by (see, e.g., Cordy, 1993)

Ŷ =
∑
x∈SF

Y (x)
𝜋(x)

. (3)

If the second density (2) is used, then the estimator (3) is equal to the finite population estimator, as follows:

ŶUT =
∑
i∈UT

yi
Si

Ei
, (4)

because ∑
x∈SF

Y∗(x)
𝜋(x)

=
∑
x∈SF

∑
i∈UT

yi
Ii(x)

Ei
=

∑
i∈UT

yi
1
Ei

∑
x∈SF

Ii(x) =
∑
i∈UT

yi
Si

Ei
. (5)

Again, we used Fubini's theorem to change the order of summation in the previous equation 5. The equality (5) does not
hold in general for density (1) but only in the case of constant sampling intensity. We note that, in Equation 4, which we
get by using Y∗(x), an inclusion of object i ∈ UT always receives the same weight 1∕Ei.

Using density (1), we can rewrite Equation 3 as

Ŷ =
∑
i∈UT

yi
∑
x∈SF

Ii(x)
𝓁(Ki)𝜋(x)

. (6)

If we use Y(x) in the HT estimator, then we see from Equation 6 that the weight of an inclusion of object i ∈ UT due
to the point x is (𝓁(Ki)𝜋(x))−1. Thus, for the HT estimator with density Y(x), it makes a difference which point x led to
the inclusion of object i ∈ UT. For finite population sampling, we do not know of any existing estimator that would use
different weights for an inclusion of the same object depending on how it was included. In that sense, Y∗(x) may perhaps
be preferable as it always gives the same weight to an inclusion of an object. However, it is interesting that the HT estimator
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based on Y(x) uses more detailed design information than the one based on Y∗(x), as with Y(x), both the number of points
that fall into the inclusion zones and their respective locations within the zones are used.

The variance, in Sen–Yates–Grundy form for a fixed sample size n, of the HT estimator (3) is given by

VSYG(Ŷ ) = −1
2 ∫F ∫F

(
𝜋(x, x′) − 𝜋(x)𝜋(x′)

)(Y (x)
𝜋(x)

− Y (x′)
𝜋(x′)

)2

dxdx′. (7)

The variance estimator for Equation 7 is given by

V̂SYG(Ŷ ) = −1
2
∑
x∈SF

∑
x′≠x

𝜋(x, x′) − 𝜋(x)𝜋(x′)
𝜋(x, x′)

(
Y (x)
𝜋(x)

− Y (x′)
𝜋(x′)

)2

, (8)

which is unbiased provided that Y(·) is bounded, 𝜋(x, x′) is positive for all x ∈ F, x′ ∈ F, x ≠ x′, and ∫F1∕𝜋(x)dx < ∞ (see
Cordy, 1993).

If the xs are independent and identically distributed (i.i.d.) on F, so that fi(·) = fj(·) = f(·), then 𝜋(x) = n · f(x) and
𝜋(x, x′) = n(n − 1)f (x)f (x′), x ≠ x′. In this case, we call the resulting design independent random sampling (IRS), and
algebra gives that the variance estimator (8) can be written as

V̂IRS(Ŷ ) = 1
n

1
n − 1

∑
x∈SF

(
Y (x)
f (x)

− 1
n

∑
x′∈SF

Y (x′)
f (x′)

)2

, (9)

or

V̂IRS(Ŷ ) = n
n − 1

∑
x∈SF

(
Y (x)
𝜋(x)

− 1
n

∑
x′∈SF

Y (x′)
𝜋(x′)

)2

.

We recognise the previous formula (9) as the continuous version of the variance estimator we have for sampling with
probabilities proportional to size and with replacement (i.e., independent). If we also have uniform intensity f(x) = 1∕𝓁(F),
x ∈ F, then we get the standard formula

V̂(Ŷ ) = (𝓁(F))2

n
1

n − 1
∑
x∈SF

(
Y (x) − ȲSF

)2
,

where ȲSF = n−1∑
x∈SF

Y (x).

3 AUXILIARY INFORMATION

Assume that we have access to p auxiliary variables Z(x) = (Z1(x), … ,Zp(x))T ∈ Rp, which are derived the same way as
Y(x), that is, averaged on the same or a similar spatial scale over F. By using the same spatial scale, we are more likely to
minimise loss of strength in the relationships between the auxiliary and target variables. In practice, it depends on the plot
(or cluster) shape and which format and resolution the auxiliary information has. There are different possibilities on how
to utilise Z(x) in the sampling design. We might want to sample proportionally to one of the (positive) auxiliary variables,
say Zk(x), that is, we let 𝜋(x) ∝ Zk(x), hoping that it will lead to a small variation in the ratios Y(x)∕𝜋(x), thus reducing the
variance of Ŷ . Other options that we will explore include selection of so-called balanced and spatially balanced samples.
To achieve this, we perform double sampling.

4 DOUBLE SAMPLING FOR BALANCE OR SPATIAL BALANCE

First, we select a large sample SF1 of N ≫ n i.i.d. points over F, with pdf f (·) ∝ 𝜋(·) on F. Then, we derive the value of the
auxiliary variables for each point. Because the first sample is large, the distribution of x in the sample will closely match the
corresponding distribution given by f (·) on F. By the Glivenko–Cantelli theorem and its multivariate generalisations (see,
e.g., DeHardt, 1971; Wolfowitz, 1954), the empirical distribution of x in the first sample of size N converges uniformly and
almost surely to the distribution given by f (·) as N → ∞. The empirical distribution of the sequence Z(xi), i = 1, 2, … ,N,
of i.i.d. observations is given by

FN(z) =
1
N

N∑
i=1

I (Z(xi) ≤ z) ,
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where I(A) is the indicator function for the event A, and Z(x) ≤ z is short for Z1(x) ≤ z1,Z2(x) ≤ z2, … ,Zp(x) ≤ zp. The
distribution FN converges uniformly and almost surely towards the distribution

FZ(z) = ∫F
I (Z(x) ≤ z) f (x)dx, (10)

as N → ∞. We denote the distribution (10) as the sampling distribution of Z(x). If f(x) = 1∕𝓁(F ), then the sampling
distribution is equal to the continuous population distribution. The sampling intensity for the first selection here is given
by 𝜋1(x) = Nf(x) = Nn−1𝜋(x). The first sample can be treated as a finite population, and for such, there are several novel
sampling designs to apply. Next, we look at two such designs that can utilise auxiliary information.

4.1 Balanced sampling
We can use the CM introduced by Deville and Tillé (2004) to select the so-called balanced samples. A sample S from a
finite population of size N is balanced on an auxiliary variable Q if

∑
i∈S

Qi

𝜋i
=

N∑
i=1

Qi, (11)

where 𝜋i, i = 1, 2, … ,N, are the inclusion probabilities. In our double sampling approach, we can treat the realised
initial large sample of size N as a finite population with auxiliary variables Qi = Z(xi)∕𝜋1(xi), i = 1, 2, … ,N. Then, a
balanced second sample S with inclusion probabilities 𝜋i = n∕N produces the final sampling intensity 𝜋(x) on F and has
the property ∑

i∈S

Z(xi)
𝜋(xi)

=
∑
i∈S

Qi

𝜋i
=

N∑
i=1

Qi =
N∑

i=1

Z(xi)
𝜋1(xi)

. (12)

The second equality in Equation 12 follows from the definition (11) of a balanced sample. This means that the HT esti-
mators of the Z totals for the size n sample are equal to the HT estimators of the Z totals for the size N sample. Because N
is supposed to be very large, we have

Ẑ1 =
∑

x∈SF1

Z(x)
𝜋1(x)

= 1
N

∑
x∈SF1

Z(x)
f (x)

≈ ∫F
Z(x)dx = Z,

as Ẑ1 is unbiased for Z with a variance that approaches zero as N → ∞. Thus, if N is large and the size n sample is balanced
for Qi = Z(xi)∕𝜋1(xi), i = 1, 2, … ,N, then we have the desired result as follows:

Ẑ =
∑
x∈SF

Z(x)
𝜋(x)

= Ẑ1 ≈ Z.

If Y(·) is linear in Z(·), that is, Y(x) = ZT(x)𝜷, then it follows that

Ŷ =
∑
x∈SF

ZT(x)𝜷
𝜋(x)

= ẐT
𝜷 = ẐT

1𝜷 ≈ ZT𝜷 = ∫F
ZT(x)𝜷dx = Y .

This property makes balanced sampling an attractive option for linear or close to linear relationships between target
variables and auxiliary variables.

An approximate variance estimator for the variance of Ŷ under balanced sampling from a continuous population is

V̂CM(Ŷ ) = n
n − p

∑
x∈SF

(
e(x)
𝜋(x)

)2

, (13)

where e(x) = Y (x) − ZT(x)𝜷̂ and

𝜷̂ =

[∑
x∈SF

Z(x)ZT(x)
𝜋(x)2

]−1 ∑
x∈SF

Z(x)Y (x)
𝜋(x)2 .

A corresponding variance estimator to the previous equation 13, but for a finite population, was given by
Deville and Tillé (2005). The only difference is that the generalised finite population correction term here has been
removed from the sums. However, the variance estimator (13) assumes perfect balance, which will not be the case in gen-
eral. Thus, the estimator (13) may have a large negative bias for small samples but may be adequate for large samples.
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Deville and Tillé (2005) argued that balanced sampling can be seen as a form of calibration at the design level, and thus,
use of a variance estimator based on residuals is appropriate.

To find a nearly unbiased variance estimator, we may instead use a two-phase approach in combination with simulation.
The main parts of such an approach are explained here, as variance estimation is important for applications. For the first
sample SF1, we can (theoretically) construct the HT estimator, as follows:

Ŷ1 =
∑

x∈SF1

Y (x)
𝜋1(x)

,

and Ŷ estimates Ŷ1 without bias, that is, E2(Ŷ |SF1) = Ŷ1, where E2(·) denotes the expectation under the second design
used to select SF from SF1. We have from the law of total variance

V(Ŷ ) = E1
(

V2
(

Ŷ |SF1
))

+ V1
(

E2
(

Ŷ |SF1
))

= E1
(

V2
(

Ŷ |SF1
))

+ V1(Ŷ1),

where Ek,Vk denote the expectation and variance under design k, respectively. An estimator of V1(Ŷ1) is

V̂1(Ŷ1) = −1
2

∑
x∈SF1

∑
x′≠x

𝜋1(x, x′) − 𝜋1(x)𝜋1(x′)
𝜋1(x, x′)

(
Y (x)
𝜋1(x)

− Y (x′)
𝜋1(x′)

)2

,

which is unbiased under the conditions given for Equation 8. This estimator cannot be calculated as we do not observe
Y(x) for all points in SF1, but an estimator of it, based on the sample SF, is

̂̂V 1(Ŷ1) = −1
2
∑
x∈SF

∑
x′≠x

𝜋1(x, x′) − 𝜋1(x)𝜋1(x′)
𝜋1(x, x′)𝜋2|1(x, x′)

(
Y (x)
𝜋1(x)

− Y (x′)
𝜋1(x′)

)2

, (14)

where 𝜋2|1(x, x′) is the conditional joint inclusion probability of x, x′ in SF, given SF1. The previous estimator (14) is
conditionally unbiased and hence unbiased for V1(Ŷ1) provided that all 𝜋2|1(x, x′) are strictly positive for all SF1, that is,
E2( ̂̂V 1(Ŷ1)) = V̂1(Ŷ1) and thus E1E2( ̂̂V 1(Ŷ1)) = V1(Ŷ1). Next, we have

V2
(

Ŷ |SF1
)
= −1

2
∑

x∈SF1

∑
x′≠x

(
𝜋2|1(x, x′) − 𝜋2|1(x)𝜋2|1(x′)

)(Y (x)
𝜋(x)

− Y (x′)
𝜋(x′)

)2

,

where 𝜋2|1(x) = n∕N is the conditional inclusion probability of x in SF given SF1. The variance V2(Ŷ |SF1) is unbiasedly
estimated by

V̂2
(

Ŷ |SF1
)
= −1

2
∑
x∈SF

∑
x′≠x

𝜋2|1(x, x′) − 𝜋2|1(x)𝜋2|1(x′)
𝜋2|1(x, x′)

(
Y (x)
𝜋(x)

− Y (x′)
𝜋(x′)

)2

, (15)

if all 𝜋2|1(x, x′) are strictly positive for all SF1. Finally, a conditional variance estimator of V(Ŷ ) is given by the sum of
Equations 14 and 15, that is,

V̂(Ŷ ) = V̂2
(

Ŷ |SF1
)
+ ̂̂V 1(Ŷ1). (16)

It follows under the same conditions as for Equations 14 and 15 that

E2
(

V̂(Ŷ )
)
= E2

(
V̂2

(
Ŷ |SF1

))
+ E2

(
̂̂V 1(Ŷ1)

)
= V2

(
Ŷ |SF1

)
+ V̂1(Ŷ1),

and
E1E2

(
V̂(Ŷ )

)
= E1

(
V2

(
Ŷ |SF1

))
+ V1(Ŷ1) = V(Ŷ ),

so Equation 16 is unbiased for V(Ŷ ). Assuming that the first sample is IRS so that we can easily find 𝜋1(x, x′), the only
unknowns needed for applying this variance estimation are 𝜋2|1(x, x′). These can be estimated through simulation, by
selecting a large number (say 10,000 or more) of samples from SF1 using the balanced design. Estimated second-order
inclusion probabilities will introduce some bias as they appear in a nonlinear way in the estimator, and additional variance
will be introduced for the variance estimator, but both the bias and the additional variance can be made arbitrarily small by
increasing the number of simulated samples. A specific simulation-based method for estimating second-order inclusion
probabilities for balanced samples selected via the CM is derived and discussed by Breidt and Chauvet (2011), and we
refer to that paper for details.

We may also argue that when N ≫ n, then we may drop ̂̂V 1(Ŷ1) and use only V̂2(Ŷ |SF1) as an estimator of the variance.
Typically, the variance is approximately proportional to the inverse of the sample size. If, for example, N = 1000n and the
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balanced design is at most 10 times more efficient than IRS at the same sample size, then we can expect the contribution
from V(Ŷ1) to be at most 1% to the total variance.

The use of a simulation-based variance estimator in a simulation study is very computationally intensive and is not the
focus of this paper. However, in application, it needs to be done only once and may be a practical solution.

A fast implementation of the CM is available in the R package BalancedSampling (Grafström & Lisic, 2016).
To achieve high entropy (and thus reduce problems with small second-order inclusion probabilities) with this fast
implementation, the order of the units should be randomised before applying the method.

4.2 Spreading the sample in auxiliary space
If Y(x) is smoother as a function of Z(x) than of x, then it can be an efficient strategy to try to select a sample whose
empirical distribution of Z(x) is close to the sampling distribution of Z(x). We say that such samples are representative
for the sampling distribution of Z(x), or spatially balanced in the Z-space. The difference between a balanced sample and
a spatially balanced sample is illustrated in Figure 1.

We can use Voronoi polytopes to measure how well a sample matches the sampling distribution. The Voronoi polytope
pi for a sample point i includes all points in the population that are closer to i than to any other sample point. The measure

B = 1
n
∑
i∈s

(vi − 1)2,

where vi =
∑

j∈pi
𝜋j for a finite population and vi = ∫pi

𝜋(x)dx for a continuous population, has been used as a measure of
how well a sample fits the sampling distribution by, for example, Stevens and Olsen (2004) and Grafström et al. (2012). A
small value of B (close to 0) indicates a good fit. How well a design succeeds in producing spatially balanced samples can
be measured by the expected value of B under the design, which usually requires a simulation to estimate. Assuming that
Y(x) and 𝜋(x) are well approximated by smooth functions of Z(x), spatially balanced samples produce an approximate
balance for Y(x), that is, Ŷ ≈ Y . This was shown by Grafström and Lundström (2013). Compared to balanced samples
that are optimal for linear relationships, spatially balanced samples can be better for nonlinear relationships.

For the second selection, we can use the LPM by Grafström et al. (2012) with equal inclusion probabilities. The LPM
has been shown in some studies to be among the best designs with respect to the spatial balance in the auxiliary space. In
the LPM, spatial balance (spread) is achieved by letting neighbouring units/points compete for inclusion in the sample,
which leads to small joint inclusion probabilities for nearby units. The recommended distance to use in the auxiliary
space, when the LPM is applied, is the Euclidean distance on standardised auxiliary variables. The standardisation is
necessary to make the auxiliary variables equally important and thus create the same level of spread for each dimension.

Sampling from a finite population can be viewed as a process of thinning the population, where some population units
are removed and the remaining units form the sample. In the second selection, the LPM algorithm makes sure that the
thinning is done as evenly as possible in the auxiliary space by using the distance measure to avoid the selection of nearby
units. The use of equal probabilities nN−1 in the LPM selection is important, as we then achieve the final sampling intensity
𝜋(x) on F. This procedure can guarantee any prespecified inclusion intensity function while spreading the sample well

FIGURE 1 Illustration of difference between balanced and spatially balanced samples. The darker (red) dots indicate the samples. A
spatially balanced sample is approximately balanced, but a balanced sample is not necessarily approximately spatially balanced. The
illustration is for equal probabilities, in which case a balanced sample is mean balanced
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into the auxiliary space. The empirical distribution of the auxiliary variables in the final sample will then tend to be close
to the sampling distribution (10) in comparison to other sampling designs.

An approximative variance estimator for LPM was derived by Grafström and Schelin (2014), who suggested using
differences between neighbours. The continuous version of the variance estimator is

V̂LPM(Ŷ ) = 1
2
∑
x∈SF

(
Y (x)
𝜋(x)

− Y (x′)
𝜋(x′)

)2

, (17)

where x′ ≠ x is the nearest neighbour to x in the sample SF. Distance is supposed to be measured in the same space,
in which the sample is spread by LPM, using the same distance function used in the LPM. Another option for variance
estimation is to use a local mean variance estimator (see, e.g., Stevens & Olsen, 2003).

5 SIMULATION EXAMPLE

To evaluate our continuous population approach for forest survey sampling by means of Monte Carlo simulations, spa-
tially continuous tree-level data are required. This requires that, for all trees in a study area, the spatial location and
other tree variables, such as diameter at breast height (DBH), tree height, and biomass, must be known. Such data sets
are available either from simulations or from a global network of forest research plots distributed across the Americas,
Africa, Asia, and Europe (Condit, 1998). For our study, we chose the Barro Colorado Island (BCI) forest dynamics plot in
Panama (Condit, Lao, Pérez, Dolins, Foster, & Hubbell, 2012). In addition to tree-level data, some sort of auxiliary data,
utilised in the sampling design, are needed. It was not possible for us to obtain auxiliary information in the form of remote
sensing data. Because of that, we chose to use auxiliaries available from the tree-level data, where aboveground tree
biomass (AGB) is our target variable, and tree density and tree basal area at a stem height of 1.3 m are the auxiliaries that
explain AGB.

For real-world applications of the continuous population approach, only auxiliary information is required. Such infor-
mation is readily available from different remote sensing platforms. In the next two sections, the BCI data set and the
specific settings for our simulation are described.

5.1 BCI forest dynamics plot
BCI is a 1,500-ha large island in the Panama Canal. It belongs together with surrounding peninsulas to the Barro Colorado
Nature Monument, which has been a fully protected national biological reserve since 1923. On the island, a 50-ha forest
dynamic plot is maintained by the Smithsonian Tropical Research Institute (Condit et al., 2012; Hubbell et al., 1999). To
date, seven censi are available where all woody plants (except liana) down to 1 cm in stem diameter at a height of 1.3 m
(DBH) have been measured. The forest type is a semi-deciduous lowland moist forest with an average canopy height of 20
to 40 m tall. The greatest part of the plot has been continuously forested for at least 1,000 years with 2 ha cleared during
the 19th century but with no logging or extraction since 1923.

From the seven available censi, the latest one from 2010 was used for our simulations. Records with dead, missing,
or broken trees have been removed. Diameters of trees/shrubs with multiple stems were identified by unique identifiers
and aggregated to one single record preserving basal area in order to avoid duplicate coordinates. After cleaning, the
data set contained 243,595 trees, corresponding to an average of 0.497 trees per square meter. The AGB of each tree
was predicted using Equation 7 in Chave et al. (2014). The allometric model requires knowledge of DBH, wood specific
gravity, and an environmental variable. DBH was available from the census, wood specific gravity was taken from the
Global Wood Density Database (Chave et al., 2009; Zanne et al., 2009), and the environmental variable was provided by
Chave et al. (2014). In case wood density was not available in the database for some species, a hierarchical approach was
applied. First genera averages, the family averages, and finally the average wood specific gravity of the 10 most abundant
species (based on basal area) were calculated. Depending on at which level the information was missing, corresponding
values were assigned to the individual observations. Following the described procedure, individual tree AGB sums up to
a total of 14,200,769 kg, yielding an average of 28.4 kg per square meter.
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5.2 Simulation
We derived the local density for the number of trees, basal area, and AGB using a 10-m-radius circular plot. For simplicity,
a buffer of 10 m was added so that all trees would have an inclusion zone of equal size. The local density for the auxiliary
variables are defined in our case as

Z(x) =
∑
i∈UT

Ii(x)zi

𝓁(Ki)
,

where UT denotes the population of 243,595 trees and Z(x) = (Z1(x),Z2(x))T is tree density and basal area density. Thus,
zi = (1, bai)T, where bai is the basal area of tree i. The derived density functions for all three variables are shown in
Figure 2.

When calculating the auxiliary densities for an application, UT would be replaced by the set of points/pixels for the aux-
iliary information derived, for example, from remote sensing. The target (AGB) density is defined according to Equation 1,
with yi being the AGB for tree i. In the first large sample, we chose to use N = 10, 000 points, and in the second selection,
we used n = 40 points, corresponding to an inventory of 40 circular field plots with 10-m radius. We utilised the CM Z(x)
as balancing variables, and the equal inclusion probabilities are also used as a balancing variable in the CM to guaran-
tee a fixed sample size. For LPM, we used the method with Z(x) as auxiliary variables and included as a separate case

FIGURE 2 Densities for all variables on the Barro Colorado Island forest dynamics plot. AGB = aboveground tree biomass
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the geographical coordinates x = (x1, x2) as auxiliary variables to make sure that the samples are well spread geographi-
cally. Further, we used a constant sampling intensity and a variable sampling intensity for all designs, which give us two
main cases.

Case 1: Constant sampling intensity over the area of size 𝓁(F ) = 520× 1020 = 530,400 m2 and with sample size n = 40.
Thus, the sampling intensity was 𝜋(x) = n∕𝓁(F ) = 40∕530,400. Included designs are IRS, CM(Z) balanced on
tree density and basal area, LPM(Z) well spread in tree density and basal area, and LPM(Z, x) well spread in tree
density, basal area, and geographical coordinates.

Case 2: Variable sampling intensity, proportional to basal area, over the area of size 𝓁(F ) = 530,400 m2 and with sample
size n = 40. The sampling intensity was 𝜋(x) = n(Z2(x) + 0.001)∕(Z2 + 0.001𝓁(F )), where Z2 = ∫F Z2(x)dx and
Z2(x) are the basal area density. The same designs as in case 1 are used, but here, all designs are used with the
variable intensity. The two different target densities Y(x) (case 2a) and Y∗(x) (case 2b) are utilised.

The results from the simulations are presented in Table 1. We see that, for case 1 (constant sampling intensity), we
achieved design effects for the CM and the LPM in the range of 0.21 to 0.32 in comparison to IRS of the same sample
size. The CM achieved slightly better results than the LPM for case 1. Adding geographical coordinates to LPM has a
slight negative effect in our case. This can be explained by the rather strong auxiliaries in Z. Conditioned on Z, the spatial
location do not add any information. However, including x in the space that we spread, the sample slightly reduces the
spread in the Z-subspace. Hence, we see a slight negative effect by adding spread also geographically. For case 2, where
we used variable sampling intensity, we achieved design effects for the CM and the LPM in the range of 0.06 to 0.11
in comparison to IRS with constant sampling intensity and of the same sample size. In this case, the LPM performed
slightly better than the CM. For IRS, the results were significantly improved by using the variable sampling intensity. The
additional gain by using the LPM or the CM was smaller than that for the constant sampling intensity.

With our settings, the target density Y(x) gave slightly better results than using Y∗(x). However, we cannot draw any
general conclusions about the two densities based only on this example, and the results may also be affected by the chosen
density of the auxiliary variables.

With a constant sampling intensity, the variance estimator for the LPM performed rather poorly and had significant
negative bias of up to −26%. The most likely reason for the large negative bias with a constant sampling intensity is that
the ratios Y(x)∕𝜋(x) then have a very skewed distribution in our population and that the sample size was rather small.
The skewness of the ratios Y(x)∕𝜋(x) was significantly reduced by using the variable sampling intensity, which improved
the variance estimation.

TABLE 1 Simulation results for Barro Colorado Island forest dynamics plot

Design Design effect V mean(V̂ ) rel.bias(V̂)
Case 1: Constant sampling intensity; target density Y(x) = Y∗(x)

IRS 1 5.54×1012 5.50×1012 −0.7%
CM(Z) 0.21 1.18×1012 4.00×1011 −66.1%
LPM(Z) 0.26 1.44×1012 1.06×1012 −26.4%
LPM(Z, x) 0.32 1.77×1012 1.51×1012 −14.7%

Case 2a: Variable sampling intensity; target density Y(x)
IRS 0.13 7.46×1011 7.55×1011 1.2%
CM(Z) 0.07 3.96×1011 2.75×1011 −30.6%
LPM(Z) 0.06 3.07×1011 2.90×1011 −5.5%
LPM(Z, x) 0.07 3.87×1011 3.99×1011 3.1%

Case 2b: Variable sampling intensity; target density Y∗(x)
IRS 0.23 1.29×1012 1.29×1012 0.0%
CM(Z) 0.10 5.61×1011 3.88×1011 −30.8%
LPM(Z) 0.07 4.04×1011 3.85×1011 −4.7%
LPM(Z, x) 0.11 5.98×1011 6.04×1011 1.0%

Note. A total of 10,000 samples of 40 circular plots with 10-m radius were selected with each
design. The table shows design effect, which is the empirical mean square error of the design rela-
tive to independent random sampling (IRS) with constant sampling intensity. Also, the empirical
variance (V), the average, and relative bias (rel.bias) of variance estimators are given. True total of
aboveground tree biomass was 14,200,769 kg. CM = cube method; LPM = local pivotal method.
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For the CM, we applied the approximate variance estimator (13) that assumes perfect balance and a large sample size.
Obviously, the sample size n = 40 was not sufficient. The variance estimator had a relative bias of about −66% for equal
sampling intensity and about −30% for variable sampling intensity. As we performed a simulation with a large number of
samples, it was not feasible to estimate conditional second-order inclusion probabilities for each initial sample. Thus, we
could not apply the unbiased estimator (16) by plugging in the estimated second-order inclusion probabilities. However,
in an application with a single sample, that could be a better alternative.

6 DISCUSSION

We presented a general statistical framework for using spatially continuous auxiliary information in balanced or spatially
balanced designs for forest inventories. Our example shows that, with auxiliary information highly correlated with forest
attributes, we can greatly improve the performance of the standard design-unbiased HT estimator compared to simpler
designs. Even greater improvements than that demonstrated in our example can be expected for larger sample sizes. We
foresee many potential applications of the sampling approaches presented here, as they may be used to select approxi-
mately balanced or spatially balanced samples from any continuous population or multivariate distribution. By using, for
example, the LPM with equal probabilities on a large sample with independent observations from a multivariate distri-
bution, we get a sample that represents the distribution much better than a sample with independent observations of the
same size.

The LPM with constant sampling intensity may be preferable in multipurpose inventories because it provides a rep-
resentative sample, where the sample distribution of auxiliary variables is close to the population distribution. This
theoretical framework has recently been used by Grafström, Zhao, Nylander, and Petersson (2017) as a basis for the devel-
opment of a new design for the national forest inventory of Sweden. The Swedish National Forest Inventory consists of
two samples, a permanent and a temporary sample. Both samples are based on clusters of circular field plots. The perma-
nent sample will continue to serve as a permanent sample (at least in the near future), but the temporary sample has been
redesigned to be more representative of a set of auxiliary variables derived from remote sensing via airborne laser scanning
and from a digital elevation model. The results presented by Grafström et al. (2017) indicate a significant improvement
over traditional designs. The increased representativity of the selected samples induced up to 95% reduction of variance
of estimators for the included auxiliary variables.

Balanced and spatially balanced samples improve the quality of the selected samples for the chosen auxiliary variables.
If a target variable is independent of the auxiliary variables, then there will be no improvement for that target variable. The
degree of improvement for a specific target variable will depend on the strength of the relationship between the auxiliary
variables and the specific target variable. Only auxiliary variables that are believed to have significant explanatory power
for at least one of the main target variables should be included in the design. Adding extra auxiliary variables, unrelated to
the target variables, may reduce the spread or balance in the other included auxiliary variables, leading to a less efficient
approach.

We note that further investigation is needed to assess the effect of using the different density functions for target and
auxiliary variables. We would also like to stress the need for caution before applying the approximate variance estimators,
as they may be severely negatively biased for small sample sizes or target variables with very skewed distributions.
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