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Identifying the spatial scale at which particular mechanisms influence plant community assembly is crucial to understanding
the mechanisms structuring communities. It has long been recognized that many elements of community structure are
sensitive to area; however the majority of studies examining patterns of community structure use a single relatively small
sampling area. As different assembly mechanisms likely cause patterns at different scales we investigate how plant species
co-occurrence patterns change with sampling unit scale. We use the checkerboard score as an index of species segregation,
and examine species C-scorel—sampling area patterns in two ways. First, we show via numerical simulation that the
C-score—area relationship is necessarily hump shaped with respect to sample plot area. Second we examine empirical
C-score-area relationships in arctic tundra, grassland, boreal forest and tropical forest communities. The minimum
sampling scale where species co-occurrence patterns were significantly different from the null model expectation was at
0.1 m? in the tundra, 0.2 m? in grassland, and 0.2 ha in both the boreal and tropical forests. Species were most segregated
in their co-occurrence (maximum C-score) at 0.3 m? in the tundra (0.54 X 0.54 m quadrats), 1.5 m? in the grassland
(1.2 X 1.2 m quadrats), 0.26 ha in the tropical forest (71 X 71 m quadrats), and a maximum was not reached at the
largest sampling scale of 1.4 ha in the boreal forest. The most important finding is that the dominant scales of community
structure in these systems are large relative to plant body size, and hence we infer that the dominant mechanisms structuring
these communities must be at similarly large scales. This provides a method for identifying the spatial scales at which
communities are maximally structured; ecologists can use this information to develop hypotheses and experiments to test
scale-specific mechanisms that structure communities.

Studies of community diversity and species co-occurrence
patterns are frequently used to make inferences about the
mechanisms structuring those communities (Gotelli and
McCabe 2002, Gotzenberger et al. 2012). While it is well
known that estimates of diversity and other elements of
community structure are sensitive to sample size and sam-
ple plot area (Gotelli and Colwell 2001, Chase and Knight
2013), experience and practical constraints mean that the
majority of studies of species co-occurrence patterns use
relatively standard sampling units (e.g. 0.25-1 m? in her-
baceous communities or 20—100 m?2 in forests) (Kent and
Coker 1992). Co-occurrence patterns can be sensitive to
plot size (Reitalu et al. 2008, Maestre et al. 2009, Long et al.
2015), however no study has systematically examined co-
occurrence scale relationships within communities. This
sensitivity means that different studies which might use dif-
ferent sized sampling units, could find different patterns of
species co-occurrence for somewhat trivial reasons. Here,

we are interested in exploring how a commonly used index
of species segregation — the checkerboard score (C-score;
Stone and Roberts 1990) — varies across spatial scale. We will
argue that there is a C-score—area relationship that follows
from the species—area relationship, and that this relationship
can potentially inform studies of diversity and community
ecology.

Segregation of species may occur for many reasons (e.g.
dispersal limitation, habitat filtering, competitive exclusion)
(Diamond 1975, Gilpin and Diamond 1982, Drake 1990,
Weiher and Keddy 2001, Blois et al. 2014). Importantly, sig-
nificant negative co-occurrence does not imply a particular
mechanism is operating, but simply quantifies the degree of
species segregation in a set of data. A comprehensive explo-
ration of how plant species co-occurrence patterns change
with the scale of the sampling unit may improve our ability
to distinguish between possible mechanisms underlying the
structure of plant communities. By identifying the spatial
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scales where segregation of species is either high or low we
can identify the spatial scales at which to conduct experi-
ments designed to investigate the mechanisms that shape
negative species co-occurrence.

Species co-occurrence data take the form of matrices,
where the data are presence or absence, the rows represent
species occurrences, and the columns represent sample site
occurrences. For somewhat trivial reasons, sample unit scale,
and body size are tightly linked because the species—area
relationship affects the number of species found in a sample
plot, while the size of the plants in the communities (e.g.
trees versus herbs) influences the number of individuals that
can occur inside a plot of a given area. For example, measure-
ments taken at a spatial scale equivalent to the size of a single
organism will necessarily have very low alpha diversity, and
therefore will have few species co-occurrences within a sin-
gle quadrat, resulting in a community (quadrat by species)
matrix containing mostly absences. At the other end of the
spectrum, samples taken at very large spatial scales relative to
the size of an individual will contain most of the species in
the community (regional species pool) in each quadrat, and
thus the community matrix will contain mostly presences.
Thus, at small and large spatial scales low co-occurrence lev-
els will be common because species appear to either never
co-occur (small scale estimates) or because species appear to
always co-occur (large scale estimates) (Ulrich et al. 2017).
This control that sample scale exerts on the degree of matrix
fill is a somewhat trivial consequence of matrix algebra, how-
ever as we will argue, when explored in an ecological con-
text, we believe this can have non-trivial implications for our
understanding of community structure.

Indeed, it has been shown that the degree of matrix fill
(i.e. the ratio of presences and absences), and the raw check-
erboard score (C-score) produces a hump-shaped relation-
ship (Ulrich and Gotelli 2013, Ulrich et al. 2017). If the
species—area relationship within a community controls the
degree of matrix fill in any observed community data set,
then this hump-shaped relationship between C-score and
area might help guide the study of ecological communities
by identifying the scales at which there is the largest signal of
species segregation. Here we argue that the point(s) of maxi-
mum negative co-occurrence can provide guidance about
the scale(s) at which communities are maximally structured
and the optimal spatial scales at which to investigate mecha-
nisms structuring those communities.

Our objectives in this paper are twofold. We first use
simulations to: 1) demonstrate that the hump-shaped matrix
fill-C-score relationship previously described by (Ulrich and
Gotelli 2013) can be driven by the species richness area rela-
tionship which produces a co-occurrence—area relationship
independent from any other assumptions about community
structure and; 2) explore how the C-score—area relationship
varies as a function of the shape of the species—area curve.
Second, we explore the observed C-score—area relation-
ships in four different plant communities differing radically
in plant body size and presumed dominant environmental
drivers: arctic tundra, boreal forest, grassland and tropical
forest. In each of these four case studies, we identify the
spatial scales where there is significant species segregation.
Answers to this question do not provide direct information
about the mechanisms that structure these communities, but
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do provide important information about the scales of the
dominant mechanism(s), and may provide guidance for the
design of future experiments to test hypothesized mecha-
nisms. We conclude by discussing some of the implications
of the results obtained from the analysis of the four case
studies.

Methods

Negative co-occurrence scores and species area
curves

We used the checkerboard score (C-score) to quantify species
segregation. The C-score is based on the number of species
co-occurrences at shared sites along pairwise sub-matrices
extracted from within the community matrix. Thus, the total
number of checkerboard units (C'i].) for each species pair #j,
was calculated as:

C,= (n-%,)(r,-X,) (1a)

i §J\"J i

where 7; is the number of times species 7 occurs without
species j, 7; is the number of times species j occurs without
species 7 and X, is the number of sites where species 7 and j
co-occur (Stone and Roberts 1990). However, Cij described
in Eq. 1a is well known to be sensitive to the dimensions of
the matrix, altered by both the number of species (i.e. the
number of rows) and the number of sites that are sampled
(i.e. the number of columns). To normalize the score based
on the number of rows, Stone and Roberts (1990) rescaled
Cj to an average calculated across all possible species pairs
(P) for a given level of gamma diversity, S. For § species,
Pis given by:

P=5(S-1)/2 (1b)

Ulrich and Gotelli (2013) refined this normalization to
eliminate bias caused by the number of sites sampled, 7, by
rescaling according to the number of possible site pairs, /V:

N =n(n-1)/2) (10

where 7 is the total number of replicate plots. Thus, at the
community level, the normalized C-score that we used
throughout our analyses is given by:

<

¢, = ijozz'qm

We use Eq. 1d to calculate a normalized C-score in every
case in our subsequent analyses making our estimates
independent of sample size and community matrix size,
thus allowing us to focus exclusively on how negative co-
occurrence changes with sample plot scale. We refer to it
as the C -score through the remainder of this manuscript
to emphasize that this metric is subtly different from the
C-score of Stone and Roberts (1990), and from other
formulations of the C-score.

(1d)

Simulated C, -score-area relationships

We first examined the C, -score—area relationship using a
numerical simulation where we generated random presence—
absence community matrices at a variety of sampling scales



and then calculated C -scores for those matrices. Spatial scale
ranged from 0.1 to 100 (this is a numerical simulation so the
scale here is unitless). Sample species richness was defined
using the species area curve (Chase and Knight 2013):

S=BA* )

where § is the cumulative number of species detected in
area A. The parameters B and z are constants that scale the
minimum number of species and the rate of accumulation
respectively.

For each spatial scale from 0.1 to 100, we generated an
occurrence matrix with 50 sample plots (i.e. 50 matrix rows),
and S, columns defined by the maximum spatial scale and
the species area curve (e.g. S,,,.=B X 100%). This simulates
a series of alternative experiments where sampling effort was
held constant, but the scale of the sampling unit used in
each experiment differs. Each point on the curve represents
one of these experiments that differs only in the scale of the
sampling unit, which allows us to generate a C -score—area
relationship that is related to the species—area relationship.
Thus, the number of species occurrences per plot (row sum)
was determined by entering plot size into Eq. 2; those occur-
rences were randomly distributed across the S, columns in
the row. Normalized C -scores (Eq. 1d) were calculated for
the random occurrence matrix at each scale, allowing us to
demonstrate the expected C,-score and sampling scale rela-
tionship. We explored how the C -score-area relationship
was influenced by the shape of the species—area curve by run-
ning these simulations for a range of species—area parameter
values B=(10, 20, 30, 50) with z held constant at z=0.25,
and z = (0.1, 0.2, 0.3, 0.4) with B held constant at B=25.

Empirical case studies

To examine empirical area—C -score relationships, we exam-
ined four case studies selected to represent a potentially wide
range of spatial scales of species interactions based on the
natural history of the resident species, overall diversity and
environmental conditions. We examined a low shrub com-
munity (Arctic tundra), a perennial herbaceous community
(grassland) with individual plant bodies at a scale of centi-
metres to metres, and two forest communities (boreal and
tropical forest) with plant bodies at a scale of tens of meters or
more. Each dataset is a map of stem locations, allowing us to
repeatedly sample the community at a variety of sample unit
scales via virtual quadrats. In each case, we placed 50 square
virtual quadrats of some constant size A within the map by
randomly selecting a plot corner coordinate without torus
wrapping and extracted the presence—absence community
matrix (species as columns and rows) with replacement. We
then increased the quadrat size, A, and sampled another 50
quadrats to simulate the same experiment but with a differ-
ent choice of quadrat size. We repeated this process at many
quadrat areas until we ran out of space in the stem map. We
compared the observed community matrices to two distinct
null models. First, we used a fixed—fixed null model where
row and column sums were held constant, but the pattern of
co-occurrence was randomized using the permatswap func-
tion in the vegan library in R (Hardy 2008, Oksanen et al.
2016). This model is robust against type I errors (Lavender
et al. 2016), but is also very conservative because it is

designed for studies where the sample unit might vary
in size (e.g. comparisons among islands; Connor and
Simberloff 1979). In order to confirm that our results
were robust against choice of null model, we also used a
fixed-equiprobable model where only row sums (i.e. species
occurrences) are held constant, but the column sums are
allowed to vary with equiprobability. This method is less
conservative, but more commonly applied to studies where
the sample unit is always the same fixed size (Gotelli 2000).
Briefly, both methods randomize matrices by shuffling
2 X 2 submatrices within the observed matrix 30 000 times
(Lehsten and Harmand 2006) while maintaining row and/or
column totals as described above. As the results of the
fixed—fixed and fixed-equiprobable models were equivalent
(Supplementary material Appendix 1 Fig. A1), we only pres-
ent full results for the fixed—fixed models. For each observed
matrix 1000 null matrices were sampled with 30 000 swaps
between each sample and with a burn-in of 30 000 swaps
prior to the first sample. We used the quasiswap method for
generating null matrices, which does not produce sequential
null matrices, but instead generates a matrix at each time
step that is fully independent of previous matrices (Miklds
and Podani 2004). The standardized effect size of the C -
score (z) can be calculated based on the observed C, -score
(C,) and the mean (u) and standard deviation (6) of the
expected C,-scores produced from the 1000 null matrices
(Ulrich and Gotelli 2007, 2010):
_ G —u
(¢}

The z statistic is significant at the two-tailed p=0.05 level
for =1.96 < z > 1.96. We then repeat the process at the
next spatial scale to generate a continuous C-score—area and
effect-size—area relationship. A significant C -score effect size
indicates that species are more or less segregated than would
be expected by chance regardless of the magnitude of the
C,-score.

From Eq. 3, we expect the relationship between C, and
area, as well as p and area to be hump-shaped for all empiri-
cal case studies. However, we have no a priori expectations
about the relationship between 6 and area, which likely
depends on habitat heterogeneity across ecological scales.
Thus, there we also have no a priori expectations about the
relationship between z and area, which very likely can take
on almost any shape. Therefore, for each case study we show
the relationship between observed and expected C,-score
and area, and also the relationship between effect size and
area. However, while we show the raw C -score, we caution
readers that in the empirical case studies effect size is really
the only meaningful way of interpreting the significance of
the patterns in species segregation. We included plots of the
observed and expected raw C -scores for several reasons.
First, based on a priori understanding of matrix fill, we
expect that the underlying patterns of significance would be
produced from the hump-shaped relationship between both
observed and expected C -score versus area relationships,
and that it was important to show that this was present in
the empirical data sets. Second, effect size is undefined in
our null community simulations both because the mean of a
null minus the mean of a null is zero, and because it is inap-
propriate to apply frequentist statistics to simulation results

)

zZ

EV-3



(White et al. 2014). Thus, while the raw C-score is not use-
ful for empirical understanding, it does provide a point of
comparison between the empirical studies and the simula-
tion results that is not possible with the effect size.

For each case study, species area curves were generated
from the stem maps via custom code that randomly placed
50 quadrats at each scale sampled (see site descriptions
below), and extracting the cumulative species richness versus
area data. Equation 2 was then fit to these subsampled data
using the nlm library in the base package of R. This method
generated the precise species accumulation curves observed
within the stem maps used to calculate the C -scores. This
is equivalent to existing software methods for generating
species-area curves, but works with the stem map data that
we had for each community. Since R? is undefined for non-
linear regression, we show the fit of the model as the stan-
dard error of each non-linear regression which represents the
average distance between the data and the regression line in
the units of the y-axis.

Case study 1: Arctic tundra

The High-Arctic tundra site was on the Truelove Lowland
(75°40'N; 84°35'W), a 43 km? polar oasis on Devon Island,
Nunavut. Sample plots were located on dry beach ridges
and had plant communities dominated by low growing
perennials such as Salix arctica, Dryas integrifolia and Carex
spp- (Bliss et al. 1994, Lamb et al. 2016). Banerjee et al.
(2011b) provides a full description of edaphic conditions
at the site.

Five rectangular plots (90 X 200-220 c¢m) were sur-
veyed in July 2008. Each plot was divided into contiguous
10 X 10 cm quadrats and species presence in each quadrat
was recorded to produce a stem map precise to the nearest
10 cm. This produced 5 maps with 180 or 200 quadrats per
plot, for a total of 940 quadrats containing data from 15
species. For the simulations we sampled from all of the five
plots with replacement using randomly placed square virtual
quadrats at nine scales ranging from 0.01 m? (10 X 10 cm)
t0 0.81 (90 X 90 cm) in size. Fifty randomly placed virtual
quadrats were sampled among all five plots at each scale to
generate the C -score by area relationship, and the standard-
ized effect size.

Case study 2: boreal forest

The boreal forest site was located at Scotty Creek, North-
west Territories, Canada (61°18’N, 121°18'W). The site is
located in a region of discontinuous permafrost, defined
by a mosaic of permafrost plateaux, bogs and channel fens.
Contiguous forest occurs only on the elevated permafrost
plateaux, but trees do occur in the bogs and fens. The nutri-
ent poor organic soils produce a forest dominated by black
spruce Picea mariana. White spruce P glauca, jack pine Pinus
banksiana and tamarack Larix laricina are present but rare in
this species poor community. A shrub layer dominated by
Betula and Rhododendron species is found below the trees.
This northern site is characterized by short cool growing sea-
sons, long cold winters and relatively low annual precipita-
tion (Quinton et al. 2009).

EV-4

The dataset was a 2013-2014 census of all vegetation >1
cm diameter at breast height (DBH; measured at 1.3 m).
The Scotty Creek Forest Dynamics Plot is part of the Smith-
sonian Centre for Tropical Forest Science — ForestGEO
programme which follows a standardized sampling protocol
(Condit 1998). The Scotty Creek Forest Dynamics Plot is
9.6 ha in area (120 X 800 m) and divided into 20 X 20
m grid cells. Every live stem was identified to species, and
mapped to the nearest cm providing a detailed individual
level map of a mature forest community composed of 38
053 individual trees, from 11 species. For the simulations,
we sampled the map with replacement using randomly
placed square virtual quadrats at scales ranging from 0.0025
ha (5 X 5m) to 1 ha (100 X 100 m). Fifty randomly placed
virtual quadrats were sampled at each scale as above.

Case study 3: grassland

The grassland site was a rough fescue short grass prairie
located at the Roy Berg Kinsella Research Ranch, in Kinsella,
Alberta, Canada (53°50’N, 111°33'W). The site is in the
Aspen Parkland ecoregion and is comprised of a mosaic of
trembling aspen Populus tremuloide) stands and short-grass
prairie. The plant community is dominated by Cj-grasses
including Festuca hallii, Hesperostipa curtiseta and Poa praten-
sis and includes more than 40 forb species of varying abun-
dance (Lamb 2008). The site was historically winter-grazed
by bison, and had been last grazed by cattle five years prior
to sampling.

In the summer of 2005, a single haphazardly placed
3 X 3 metre plot was divided into 36 0.5 X 0.5 m grid
cells. Every live stem was identified to species and mapped
to the nearest centimetre providing a detailed map of the
distribution of 1889 stems from 29 species. For the simula-
tions, we sampled the map with replacement using randomly
placed square virtual quadrats at scales ranging from 0.1 m?
(10 X 10 cm) to 2.25 m? (1.5 X 1.5 m). Fifty randomly
placed virtual quadrats were sampled at each scale as above.

Case study 4: tropical forest

Odur tropical forest case study system was the Barro Colorado
Island (BCI) forest dynamics plot in Panama (9°15'N,
~79°85"W) (Condit 1998, Hubbell et al. 1999). The system
is a species-rich old-growth tropical forest in a highly sea-
sonal environment with 2500 mm of precipitation annually,
a four month dry season, and modest topographic variation.

The data set was the publically available 2010 census
(census 7) of trees >1 cm diameter at breast height (DBH)
(Condit et al. 2012). BCI is in the same network of forest
plots as Scotty Creek and the details of the sampling design
and protocol are the same (Condit 1998) except that BCI is
a 50 ha plot (500 X 1000 m). As in the boreal forest, every
live stem >1 cm DBH and taller than 1.3 m, was identified
to species and mapped to the nearest cm within the 50-ha
plot. As above, this provided us with a detailed individual
level map of the mature forest community from 223 176
individual trees, for 301 species. For the simulations, we
sampled the map with replacement using randomly placed
square virtual quadrats at scales ranging from 0.0025 ha



(5 X 5 m) to 25 ha (500 X 500 m). Fifty randomly placed

virtual quadrats were sampled at each scale as above.

Data deposition

Data available from the Dryad Digital Repository: <http://
dx.doi.org/10.5061/dryad.5f876 > (McNickle et al. 2017)
and Smithsonian Tropical Forest Network (Scotty and
BCI data). All code used in this manuscript is archived at:
< https://github.com/ggmenickle/CScore >.

Results

Numerical simulations

Not surprisingly, in all simulations, there was a hump-
shaped C -score-area relationship, though at z=0.1 the
peak was shifted nearly to zero (Fig. 1). The exponent, z,
changes the slope of the SAR in log-log space and thus
the rate at which the matrix fills with increasing sample
unit scale. Consequently, increasing z moves the peak of
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the C -score—area relationship to larger and larger scales.
The constant, B, changes the y-intercept of the SAR in
log—log space, and consequently has no effect on the C,-
score—area relationship. The constant B does, however,
change the step-like appearance of the C -score—area rela-
tionship that arises because species richness is an integer,
and so lower gamma diversity reduces the smoothness of
the relationship. Effect size is undefined for the numerical
simulations since the simulated communities are already
null communities.

Empirical - species by area relationships

The exponent z of the species area curves (rate of species
accumulation) was lowest in the species rich tropical forest
(z=0.18), and was similar in the other three communities (z
approximately 0.3) (Fig. 2). The BCI z-value is higher than
the previously published value of 0.146 (Condit et al. 2005),
likely due to differences in the plot selection approaches. As
expected, the intercept B increased for the more species rich
communities (Table 1). The species area curve sampling for
the tundra often included plots with no plants even at larger
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Figure 1. Effects of changing species—area relationship parameters on C-score—area relationships (left panels), the species area—relationships
are also shown (right side). In panels (a) and (b) z was varied as indicated in the figure legend and B was held constant at B=25. In panels
(c) and (d) B was varied as indicated in the figure legend and z was held constant at z=0.25.
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Figure 2. Species area curves for (a) tundra, (b) boreal forest, (c) grassland and (d) tropical forest sites. Darker symbols indicate larger num-
bers of overlapping datapoints. SE is the standard error of the fitted non-linear model (since R? is undefined for non-linear regression): SE
represents the average distance between the data and the regression line in the units of the y-axis.

sampling areas, highlighting the patchy nature of that com-
munity, and resulting in high error around the fitted curve.

Empirical — C -score by area relationships

The fixed-fixed and fixed-equiprobable null models produced
similar results (Supplementary material Appendix Fig. Al).
Since there were no major differences in conclusions from
either null model, in what follows we present and discuss the
more conservative fixed-fixed null model only.

We expect the raw C -score by area relationships to be
hump shaped. Indeed, all case studies, except the boreal for-
est, had hump shaped C -score-area relationships for both
observed and expected null C -scores (Fig. 3). The maxi-
mum C -score (the scale at which species are most segregated
in their co-occurrence) was reached in the tundra at 0.3 m?
(0.54 X 0.54 m quadrats) and in the grassland community
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at 1.5 m?2 (1.2 X 1.2 m quadrats). The maximum C -score in
the boreal forest was not reached at the maximum sampling
scale of 1.4 ha, while in the tropical forest, maximum C -
score was observed at 0.26 ha (71 X 71 m quadrats) (Fig. 3).
In all cases the maximum observed C -score was significantly
different from the expected null C -score.

This significance of the observed C,-scores are most
clearly seen from, the standardized effect size, which indicates
that the observed C -score is more segregated than would
be expected by chance regardless of the absolute value of the
C,-score. Unlike the C-score-area relationship which we
expect to be hump shaped, we have no expectation about the
shape of the effect size—area relationship. Indeed, these curves
took on a variety of complex shapes (Fig. 4). The minimum
scale that the C -score effect size was significantly different
from random was at 0.1 m? in the tundra, 0.2 m? in grassland,
and 0.2 ha in both the boreal and tropical forest (Fig. 4).



Table 1. Summary of empirical descriptions of the communities.

Communities

Parameter Tundra Boreal forest Grassland Tropical forest
Gamma diversity 15 11 29 311
Minimum community richness (B) 4.87 5.84 13.55 160.71

rate of species accumulation (z) 0.29 0.33 0.25 0.18
Area of max. C-score 0.3 m? - 1.5 m2 0.26 ha
Min area significant effect size 0.1 m2 0.2 ha 0.2 m2 0.2 ha
Area of max. effect size 0.2 m2 - 1.5 m? -

Only the tundra and grassland data sets were sampled at a2 Discussion

sufficient spatial scale to estimate the maximum effect size
which occurred at 0.2 m? and 1.5 m? respectively (Fig. 4a, c).
Neither forest community reached a maximum effect size,
including the tropical forest where we were able to sample
25 ha quadrats, which strikes us as remarkable (Fig. 4b, d).
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It is well known that estimates of diversity vary with the
spatial scale of plots and the sampling effort of a survey
(Gotelli and Colwell 2001, Chase and Knight 2013). We
have shown here via numerical simulation that the relation-
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Figure 3. Observed and expected C, score—area relationships for (a) tundra, (b) boreal forest, (c) grassland and (d) tropical forest sites. Lines
are fit using a non-parametric loess function, and grey zones indicate 1 SE around the line. These results are from the fixed-fixed null model

only.
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ship between species richness and area sample unit scale
can influence measures of species co-occurrence such as the
C,-score (Fig. 1). This happens because the accumulation
of species with increasing area necessarily produces a C,-
score—area relationship which is hump shaped. This is nei-
ther novel nor surprising as it has previously been shown
that varying matrix fill causes such a hump-shaped relation-
ship with C-score (Ulrich and Gotelli 2013, Ulrich et al.
2017). Many mechanisms can lead to varying matrix fill;
Ulrich et al. (2017) for example, have shown that chang-
ing levels of beta diversity (species turnover) across gradi-
ents of gamma diversity (regional species pool size) can
produce similar hump-shaped C-score patterns. Here we
have shown that within a single community varying matrix
fill tied to the species—area relationship can also generate a
general C -score—area relationship. Specifically, we show that
intermediate plot sizes with intermediate levels of matrix fill
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(proportion of 1s in the matrix) will produce maximum C,-
scores, even in randomly assembled communities (Fig. 1).
Importantly, our four case studies show that the scale of the
intermediate plot size in real ecological communities cannot
be predicted a priori, but represents the scale at which there
is the largest signal of negative species co-occurrence. The
identification of the scale with the maximum statistically sig-
nificant level of negative species co-occurrence is the scale
at which community ecologists are most likely to detect the
mechanisms that structure communities. While we illustrate
this phenomenon for the C -score metric, this observation is
likely to apply more broadly across many approaches to the
study of species co-occurrence.

Based on this linkage between the species-area relation-
ship and co-occurrence, we argue that the measurement of
negative co-occurrence at any one arbitrary spatial scale does
not provide complete evidence about how communities are

(b)
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Figure 4. Standardized effect size—area relationships for (a) tundra, (b) boreal forest, (c) grassland and (d) tropical forest sites. Values above
the horizontal red line are statistically significant. Lines are fit using a non-parametric loess function, and grey zones indicate 1 SE around

the line. These results are from the fixed-fixed null model only.
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structured. Many have pointed out that studies of biodiversity
are highly scale dependent and that traditional standardised
sampling protocols are often not enough to fully study pat-
terns of biodiversity (Gotelli and Colwell 2001, Chase and
Knight 2013). Indeed, in all of our empirical case studies, we
found scales at which C -scores were not different from what
was expected by chance under the null model (implying
communities that are not strongly structured with respect
to negative co-occurrence) and also scales with scores greater
than expected (implying that scale-dependent mechanisms
are driving co-occurrence patterns) (Fig. 4). The scales at
which significant negative co-occurrence was observed
appear to depend, in part, on the scale of the organisms in
the system, and potentially on the relationship between abi-
otic variability and mean organism size. The smaller size of
grassland and tundra plants corresponded to a smaller scale
of structure compared to the large scale for boreal and tropi-
cal trees. Importantly, the plot size where we began to see
evidence of significant negative co-occurrence was typically
quite large compared to standard sampling units (Table 1).
Having identified the scales at which significant structure is
encountered, it becomes much more feasible to undertake
empirical studies to determine whether mechanisms such as
species interactions, abiotic drivers, or habitat filtering are
the key drivers of patterns at these scales. A first step in such
studies may be to use a pairwise analysis approach such as
Blois et al. (2014) to identify species pairs with significant
co-occurrence patterns at a given scale, and to partition geo-
graphic distance effects into those attributable to environ-
mental drivers and other factors (e.g. dispersal distance).

In the grassland and tundra communities, the minimum
scale of significant C -scores and the scale of the maximum
observed C-score could conceivably match the scale at which
root systems are able to directly interact (Schenk et al. 1999,
Frank et al. 2010, Lamb et al. 2016). Further, many spe-
cies in the grassland and arctic tundra systems are clonal.
Interconnected clones may spread over areas equivalent to
the scales of 0.2-1.5 m? detected by our analyses, suggest-
ing that shoot and root competition at the scale of clones
might also be an important factor structuring these commu-
nities (de Kroon et al. 1992, Wildov4 2004). Thus the scales
of community structure detected in the grassland are con-
sistent with biotic mechanisms of species segregation such
as direct plant—plant competition for soil resources among
and between individuals. Alternatively, the geospatial pat-
terns of important environmental factors drive small-scale
species segregation. At the tundra site, for example, soil
moisture has a 1.6 m spatial range (Banerjee et al. 2011a),
tundra microbial communities often have a range of ~2 m
(Banerjee et al. 2011b), and nutrient cycling a range between
2 and 4 m (Banerjee and Siciliano 2012a, b). The potential
role of environmental or competitive mechanisms structur-
ing co-occurrence patterns should not be surprising, as there
is evidence from a variety of ecosystems that both biotic
and abiotic factors can drive species co-occurrence patterns
(Dullinger et al. 2007, Reitalu et al. 2008).

In contrast to the grassland and tundra systems, commu-
nity structure at the scale of 0.26 to >1.5 hectares in the
boreal and tropical forests is unlikely to be driven by resource
competition. At these scales, individual root systems would
require a radius of ~35 m (tropical) and more than 150 m

(boreal) for the outer root tips of two trees to directly inter-
act. Common mycorrhizal networks (CMN) could extend
further than roots, as trees in a temperate coniferous forest
20 m apart can be connected (Beiler et al. 2015), but there is
no evidence that CMNs routinely connect individuals across
70 m or more. Such large-scale patterns of co-occurrence
could be driven through a variety of ecological mechanisms
including the dispersal of seeds and distribution of differ-
ent regeneration niches, herbivory at the scales at which
large animals move such as the Janzen—Connell effect, or
pathogen impacts on aggregated populations (Janzen 1970,
Connell 1971, Grubb 1977, Condit et al. 2000). Given that
species richness of the tropical forest is not fully captured in
the 50 ha BCI plot (Condit et al. 1996, 2005), there is also
the possibility larger-scale biotic driven patterns could exist.
Finally, as in the tundra and grassland systems, these forest
community patterns could be driven by the scale of abiotic
effects (Condit et al. 2000). At the boreal forest site, the
landscape is composed of large repeating plant community
units driven largely by hydrology and permafrost dynamics
with large areas (peat plateaux) dominated by black spruce
and wetter and more nutrient-rich fens dominated by larch
(Camill 1999). The maximum sampling scale of 1.4 ha was
likely not large enough to capture these large scale hydrologi-
cal features that drive species distributions.

One implication of these results is that the failure of
many co-occurrence studies to find evidence for significant
co-occurrence patterns (Gotzenberger et al. 2012, Garcia-
Baquero and Crujeiras 2015) may simply be due to sampling
at an arbitrary spatial scale which is different from the scale
at which the community is structured. The analysis pre-
sented here suggests that previous studies finding weakly or
unstructured communities may not have used a sample spa-
tial scale suitable to the community and its structuring pro-
cesses. Because we may not have been looking for evidence at
the spatial scales where processes such competitive exclusion
occurs we could erroneously conclude that such mechanisms
are not important. For example, our own past study of com-
petition in the grassland system used as a case study here
found limited evidence for competition structuring commu-
nity diversity (Lamb and Cahill 2008). That study, however,
measured the community at 0.25 m?, and the analysis here
shows that we might not always expect to find evidence of
competitive exclusion at such a small scale (Fig. 4b).

Odur results suggest that a multi-scale sampling approach
will be an important first step in studies examining species
co-occurrence. Our results also suggest that negative co-
occurrence is not a characteristic of communities, implying
that sufficient sampling does not bring one to a fixed com-
munity measure of negative co-occurrence, as is the case with
other community metrics like richness and evenness. Esti-
mating the C -score—area relationship can therefore provide
a method to identify the scales at which communities are
most strongly structured, and hence the scales at which the
ecological or abiotic processes structuring those communi-
ties are the strongest. Identifying the scale provides clues as
to the mechanisms that are most important in that system
and can guide subsequent experimentation. Our simulations
suggest that this hump shaped C -score—area relationship
will be universal, and our four community analyses support
this view. It remains to be seen if this is a general feature of
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the C,-score—area relationship, or if this was particular to the
four case studies included in this study. A multi-modal C -
score—area relationship, for example, would imply multiple
mechanisms operating at multiple scales.

In conclusion, we have shown here that the species-area
relationship naturally produces a C-score—area relationship
(Fig. 1). By analyzing four ecologically different case stud-
ies from arctic tundra to tropical forest, we show that the
dominant scales of structure in these systems were surpris-
ingly large relative to plant body system size in these systems.
It has long been recognized that estimates of diversity are
influenced by field sampling choices, but it has been difficult
to make general suggestions about how one should design
studies to account for this. The C -score—area relationship
can provide guidance for identifying the spatial scales where
species interactions influence community structure, it can
also help develop hypotheses about the mechanisms that
structure communities, and we believe provides a next step
towards ecological understanding and unifying a wide array
of otherwise contradictory studies.
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