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Identifying the spatial scale at which particular mechanisms influence plant community assembly is crucial to understanding 
the mechanisms structuring communities. It has long been recognized that many elements of community structure are 
sensitive to area; however the majority of studies examining patterns of community structure use a single relatively small 
sampling area. As different assembly mechanisms likely cause patterns at different scales we investigate how plant species 
co-occurrence patterns change with sampling unit scale. We use the checkerboard score as an index of species segregation, 
and examine species C-score1–sampling area patterns in two ways. First, we show via numerical simulation that the 
C-score–area relationship is necessarily hump shaped with respect to sample plot area. Second we examine empirical  
C-score–area relationships in arctic tundra, grassland, boreal forest and tropical forest communities. The minimum 
sampling scale where species co-occurrence patterns were significantly different from the null model expectation was at 
0.1 m2 in the tundra, 0.2 m2 in grassland, and 0.2 ha in both the boreal and tropical forests. Species were most segregated 
in their co-occurrence (maximum C-score) at 0.3 m2 in the tundra (0.54 3 0.54 m quadrats), 1.5 m2 in the grassland  
(1.2 3 1.2 m quadrats), 0.26 ha in the tropical forest (71 3 71 m quadrats), and a maximum was not reached at the 
largest sampling scale of 1.4 ha in the boreal forest. The most important finding is that the dominant scales of community 
structure in these systems are large relative to plant body size, and hence we infer that the dominant mechanisms structuring 
these communities must be at similarly large scales. This provides a method for identifying the spatial scales at which 
communities are maximally structured; ecologists can use this information to develop hypotheses and experiments to test 
scale-specific mechanisms that structure communities. 

Studies of community diversity and species co-occurrence 
patterns are frequently used to make inferences about the 
mechanisms structuring those communities (Gotelli and 
McCabe 2002, Götzenberger et al. 2012). While it is well 
known that estimates of diversity and other elements of 
community structure are sensitive to sample size and sam-
ple plot area (Gotelli and Colwell 2001, Chase and Knight 
2013), experience and practical constraints mean that the 
majority of studies of species co-occurrence patterns use 
relatively standard sampling units (e.g. 0.25–1 m2 in her-
baceous communities or 20–100 m2 in forests) (Kent and 
Coker 1992). Co-occurrence patterns can be sensitive to 
plot size (Reitalu et al. 2008, Maestre et al. 2009, Long et al. 
2015), however no study has systematically examined co-
occurrence scale relationships within communities. This 
sensitivity means that different studies which might use dif-
ferent sized sampling units, could find different patterns of 
species co-occurrence for somewhat trivial reasons. Here, 

we are interested in exploring how a commonly used index 
of species segregation – the checkerboard score (C-score; 
Stone and Roberts 1990) – varies across spatial scale. We will 
argue that there is a C-score–area relationship that follows 
from the species–area relationship, and that this relationship 
can potentially inform studies of diversity and community 
ecology.

 Segregation of species may occur for many reasons (e.g. 
dispersal limitation, habitat filtering, competitive exclusion) 
(Diamond 1975, Gilpin and Diamond 1982, Drake 1990, 
Weiher and Keddy 2001, Blois et al. 2014). Importantly, sig-
nificant negative co-occurrence does not imply a particular 
mechanism is operating, but simply quantifies the degree of 
species segregation in a set of data. A comprehensive explo-
ration of how plant species co-occurrence patterns change 
with the scale of the sampling unit may improve our ability 
to distinguish between possible mechanisms underlying the 
structure of plant communities. By identifying the spatial 
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scales where segregation of species is either high or low we 
can identify the spatial scales at which to conduct experi-
ments designed to investigate the mechanisms that shape 
negative species co-occurrence. 

Species co-occurrence data take the form of matrices, 
where the data are presence or absence, the rows represent 
species occurrences, and the columns represent sample site 
occurrences. For somewhat trivial reasons, sample unit scale, 
and body size are tightly linked because the species–area 
relationship affects the number of species found in a sample 
plot, while the size of the plants in the communities (e.g. 
trees versus herbs) influences the number of individuals that 
can occur inside a plot of a given area. For example, measure-
ments taken at a spatial scale equivalent to the size of a single 
organism will necessarily have very low alpha diversity, and 
therefore will have few species co-occurrences within a sin-
gle quadrat, resulting in a community (quadrat by species) 
matrix containing mostly absences. At the other end of the 
spectrum, samples taken at very large spatial scales relative to 
the size of an individual will contain most of the species in 
the community (regional species pool) in each quadrat, and 
thus the community matrix will contain mostly presences. 
Thus, at small and large spatial scales low co-occurrence lev-
els will be common because species appear to either never 
co-occur (small scale estimates) or because species appear to 
always co-occur (large scale estimates) (Ulrich et al. 2017). 
This control that sample scale exerts on the degree of matrix 
fill is a somewhat trivial consequence of matrix algebra, how-
ever as we will argue, when explored in an ecological con-
text, we believe this can have non-trivial implications for our 
understanding of community structure. 

Indeed, it has been shown that the degree of matrix fill 
(i.e. the ratio of presences and absences), and the raw check-
erboard score (C-score) produces a hump-shaped relation-
ship (Ulrich and Gotelli 2013, Ulrich  et  al. 2017). If the 
species–area relationship within a community controls the 
degree of matrix fill in any observed community data set, 
then this hump-shaped relationship between C-score and 
area might help guide the study of ecological communities 
by identifying the scales at which there is the largest signal of 
species segregation. Here we argue that the point(s) of maxi-
mum negative co-occurrence can provide guidance about 
the scale(s) at which communities are maximally structured 
and the optimal spatial scales at which to investigate mecha-
nisms structuring those communities. 

Our objectives in this paper are twofold. We first use 
simulations to: 1) demonstrate that the hump-shaped matrix 
fill-C-score relationship previously described by (Ulrich and 
Gotelli 2013) can be driven by the species richness area rela-
tionship which produces a co-occurrence–area relationship 
independent from any other assumptions about community 
structure and; 2) explore how the C-score–area relationship 
varies as a function of the shape of the species–area curve. 
Second, we explore the observed C-score–area relation-
ships in four different plant communities differing radically 
in plant body size and presumed dominant environmental 
drivers: arctic tundra, boreal forest, grassland and tropical 
forest. In each of these four case studies, we identify the 
spatial scales where there is significant species segregation. 
Answers to this question do not provide direct information 
about the mechanisms that structure these communities, but 

do provide important information about the scales of the 
dominant mechanism(s), and may provide guidance for the 
design of future experiments to test hypothesized mecha-
nisms. We conclude by discussing some of the implications 
of the results obtained from the analysis of the four case 
studies. 

Methods

Negative co-occurrence scores and species area 
curves

We used the checkerboard score (C-score) to quantify species 
segregation. The C-score is based on the number of species 
co-occurrences at shared sites along pairwise sub-matrices 
extracted from within the community matrix. Thus, the total 
number of checkerboard units (Cij) for each species pair ij, 
was calculated as:

C r X r Xij i ij j ij= −( ) −( ) 	  (1a)

where ri is the number of times species i occurs without 
species j, rj is the number of times species j occurs without 
species i and Xij is the number of sites where species i and j 
co-occur (Stone and Roberts 1990). However, Cij described 
in Eq. 1a is well known to be sensitive to the dimensions of 
the matrix, altered by both the number of species (i.e. the 
number of rows) and the number of sites that are sampled 
(i.e. the number of columns). To normalize the score based 
on the number of rows, Stone and Roberts (1990) rescaled 
Cij to an average calculated across all possible species pairs 
(P) for a given level of gamma diversity, S. For S species,  
P is given by: 

P S S= −( )1 2/ 	  (1b)

Ulrich and Gotelli (2013) refined this normalization to 
eliminate bias caused by the number of sites sampled, n, by 
rescaling according to the number of possible site pairs, N:

N n n= −( ( ) / )1 2 	  (1c)

where n is the total number of replicate plots. Thus, at the 
community level, the normalized C-score that we used 
throughout our analyses is given by:

C
C

PNn j

S

i j

ij=
= <∑ ∑0

	  (1d)

We use Eq. 1d to calculate a normalized Cn-score in every 
case in our subsequent analyses making our estimates 
independent of sample size and community matrix size, 
thus allowing us to focus exclusively on how negative co-
occurrence changes with sample plot scale. We refer to it 
as the Cn-score through the remainder of this manuscript 
to emphasize that this metric is subtly different from the 
C-score of Stone and Roberts (1990), and from other 
formulations of the C-score.

Simulated Cn-score–area relationships

We first examined the Cn-score–area relationship using a 
numerical simulation where we generated random presence–
absence community matrices at a variety of sampling scales 
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and then calculated Cn-scores for those matrices. Spatial scale 
ranged from 0.1 to 100 (this is a numerical simulation so the 
scale here is unitless). Sample species richness was defined 
using the species area curve (Chase and Knight 2013): 

S BAz= 	  (2)
where S is the cumulative number of species detected in 
area A. The parameters B and z are constants that scale the 
minimum number of species and the rate of accumulation 
respectively. 

For each spatial scale from 0.1 to 100, we generated an 
occurrence matrix with 50 sample plots (i.e. 50 matrix rows), 
and Smax columns defined by the maximum spatial scale and 
the species area curve (e.g. Smax = B 3 100z). This simulates 
a series of alternative experiments where sampling effort was 
held constant, but the scale of the sampling unit used in 
each experiment differs. Each point on the curve represents 
one of these experiments that differs only in the scale of the 
sampling unit, which allows us to generate a Cn-score–area 
relationship that is related to the species–area relationship. 
Thus, the number of species occurrences per plot (row sum) 
was determined by entering plot size into Eq. 2; those occur-
rences were randomly distributed across the Smax columns in 
the row. Normalized Cn-scores (Eq. 1d) were calculated for 
the random occurrence matrix at each scale, allowing us to 
demonstrate the expected Cn-score and sampling scale rela-
tionship. We explored how the Cn-score–area relationship 
was influenced by the shape of the species–area curve by run-
ning these simulations for a range of species–area parameter 
values B = (10, 20, 30, 50) with z held constant at z = 0.25, 
and z = (0.1, 0.2, 0.3, 0.4) with B held constant at B = 25. 

Empirical case studies

To examine empirical area–Cn-score relationships, we exam-
ined four case studies selected to represent a potentially wide 
range of spatial scales of species interactions based on the 
natural history of the resident species, overall diversity and 
environmental conditions. We examined a low shrub com-
munity (Arctic tundra), a perennial herbaceous community 
(grassland) with individual plant bodies at a scale of centi-
metres to metres, and two forest communities (boreal and 
tropical forest) with plant bodies at a scale of tens of meters or 
more. Each dataset is a map of stem locations, allowing us to 
repeatedly sample the community at a variety of sample unit 
scales via virtual quadrats. In each case, we placed 50 square 
virtual quadrats of some constant size A within the map by 
randomly selecting a plot corner coordinate without torus 
wrapping and extracted the presence–absence community 
matrix (species as columns and rows) with replacement. We 
then increased the quadrat size, A, and sampled another 50 
quadrats to simulate the same experiment but with a differ-
ent choice of quadrat size. We repeated this process at many 
quadrat areas until we ran out of space in the stem map. We 
compared the observed community matrices to two distinct 
null models. First, we used a fixed–fixed null model where 
row and column sums were held constant, but the pattern of 
co-occurrence was randomized using the permatswap func-
tion in the vegan library in R (Hardy 2008, Oksanen et al. 
2016). This model is robust against type I errors (Lavender  
et  al. 2016), but is also very conservative because it is 

designed for studies where the sample unit might vary 
in size (e.g. comparisons among islands; Connor and 
Simberloff 1979). In order to confirm that our results 
were robust against choice of null model, we also used a 
fixed-equiprobable model where only row sums (i.e. species 
occurrences) are held constant, but the column sums are 
allowed to vary with equiprobability. This method is less 
conservative, but more commonly applied to studies where 
the sample unit is always the same fixed size (Gotelli 2000). 
Briefly, both methods randomize matrices by shuffling  
2 3 2 submatrices within the observed matrix 30 000 times 
(Lehsten and Harmand 2006) while maintaining row and/or  
column totals as described above. As the results of the  
fixed–fixed and fixed-equiprobable models were equivalent 
(Supplementary material Appendix 1 Fig. A1), we only pres-
ent full results for the fixed–fixed models. For each observed 
matrix 1000 null matrices were sampled with 30 000 swaps 
between each sample and with a burn-in of 30 000 swaps 
prior to the first sample. We used the quasiswap method for 
generating null matrices, which does not produce sequential 
null matrices, but instead generates a matrix at each time 
step that is fully independent of previous matrices (Miklós 
and Podani 2004). The standardized effect size of the Cn-
score (z) can be calculated based on the observed Cn-score 
(Cn) and the mean (µ) and standard deviation (σ) of the 
expected Cn-scores produced from the 1000 null matrices 
(Ulrich and Gotelli 2007, 2010): 

z
Cn=

− µ
σ

	  (3)

The z statistic is significant at the two-tailed p = 0.05 level 
for –1.96  z  1.96. We then repeat the process at the 
next spatial scale to generate a continuous Cn-score–area and 
effect-size–area relationship. A significant Cn-score effect size 
indicates that species are more or less segregated than would 
be expected by chance regardless of the magnitude of the 
Cn-score. 

From Eq. 3, we expect the relationship between Cn and 
area, as well as μ and area to be hump-shaped for all empiri-
cal case studies. However, we have no a priori expectations 
about the relationship between σ and area, which likely 
depends on habitat heterogeneity across ecological scales. 
Thus, there we also have no a priori expectations about the 
relationship between z and area, which very likely can take 
on almost any shape. Therefore, for each case study we show 
the relationship between observed and expected Cn-score 
and area, and also the relationship between effect size and 
area. However, while we show the raw Cn-score, we caution 
readers that in the empirical case studies effect size is really 
the only meaningful way of interpreting the significance of 
the patterns in species segregation. We included plots of the 
observed and expected raw Cn-scores for several reasons. 
First, based on a priori understanding of matrix fill, we 
expect that the underlying patterns of significance would be 
produced from the hump-shaped relationship between both 
observed and expected Cn-score versus area relationships, 
and that it was important to show that this was present in 
the empirical data sets. Second, effect size is undefined in 
our null community simulations both because the mean of a 
null minus the mean of a null is zero, and because it is inap-
propriate to apply frequentist statistics to simulation results 
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(White et al. 2014). Thus, while the raw C-score is not use-
ful for empirical understanding, it does provide a point of 
comparison between the empirical studies and the simula-
tion results that is not possible with the effect size. 

 For each case study, species area curves were generated 
from the stem maps via custom code that randomly placed 
50 quadrats at each scale sampled (see site descriptions 
below), and extracting the cumulative species richness versus 
area data. Equation 2 was then fit to these subsampled data 
using the nlm library in the base package of R. This method 
generated the precise species accumulation curves observed 
within the stem maps used to calculate the Cn-scores. This 
is equivalent to existing software methods for generating 
species-area curves, but works with the stem map data that 
we had for each community. Since R2 is undefined for non-
linear regression, we show the fit of the model as the stan-
dard error of each non-linear regression which represents the 
average distance between the data and the regression line in 
the units of the y-axis. 

Case study 1: Arctic tundra

The High-Arctic tundra site was on the Truelove Lowland 
(75°40′N; 84°35′W), a 43 km2 polar oasis on Devon Island, 
Nunavut. Sample plots were located on dry beach ridges 
and had plant communities dominated by low growing 
perennials such as Salix arctica, Dryas integrifolia and Carex 
spp. (Bliss et al. 1994, Lamb et al. 2016). Banerjee et al. 
(2011b) provides a full description of edaphic conditions 
at the site. 

Five rectangular plots (90 3 200–220 cm) were sur-
veyed in July 2008. Each plot was divided into contiguous  
10 3 10 cm quadrats and species presence in each quadrat 
was recorded to produce a stem map precise to the nearest 
10 cm. This produced 5 maps with 180 or 200 quadrats per 
plot, for a total of 940 quadrats containing data from 15 
species. For the simulations we sampled from all of the five 
plots with replacement using randomly placed square virtual 
quadrats at nine scales ranging from 0.01 m2 (10 3 10 cm) 
to 0.81 (90 3 90 cm) in size. Fifty randomly placed virtual 
quadrats were sampled among all five plots at each scale to 
generate the Cn-score by area relationship, and the standard-
ized effect size. 

Case study 2: boreal forest

The boreal forest site was located at Scotty Creek, North-
west Territories, Canada (61°18′N, 121°18′W). The site is 
located in a region of discontinuous permafrost, defined 
by a mosaic of permafrost plateaux, bogs and channel fens. 
Contiguous forest occurs only on the elevated permafrost 
plateaux, but trees do occur in the bogs and fens. The nutri-
ent poor organic soils produce a forest dominated by black 
spruce Picea mariana. White spruce P. glauca, jack pine Pinus 
banksiana and tamarack Larix laricina are present but rare in 
this species poor community. A shrub layer dominated by 
Betula and Rhododendron species is found below the trees. 
This northern site is characterized by short cool growing sea-
sons, long cold winters and relatively low annual precipita-
tion (Quinton et al. 2009). 

The dataset was a 2013–2014 census of all vegetation 1 
cm diameter at breast height (DBH; measured at 1.3 m). 
The Scotty Creek Forest Dynamics Plot is part of the Smith-
sonian Centre for Tropical Forest Science – ForestGEO 
programme which follows a standardized sampling protocol 
(Condit 1998). The Scotty Creek Forest Dynamics Plot is 
9.6 ha in area (120 3 800 m) and divided into 20 3 20 
m grid cells. Every live stem was identified to species, and 
mapped to the nearest cm providing a detailed individual 
level map of a mature forest community composed of 38 
053 individual trees, from 11 species. For the simulations, 
we sampled the map with replacement using randomly 
placed square virtual quadrats at scales ranging from 0.0025 
ha (5 3 5 m) to 1 ha (100 3 100 m). Fifty randomly placed 
virtual quadrats were sampled at each scale as above. 

Case study 3: grassland

The grassland site was a rough fescue short grass prairie 
located at the Roy Berg Kinsella Research Ranch, in Kinsella, 
Alberta, Canada (53°50′N, 111°33′W). The site is in the 
Aspen Parkland ecoregion and is comprised of a mosaic of 
trembling aspen Populus tremuloide) stands and short-grass 
prairie. The plant community is dominated by C3-grasses 
including Festuca hallii, Hesperostipa curtiseta and Poa praten-
sis and includes more than 40 forb species of varying abun-
dance (Lamb 2008). The site was historically winter-grazed 
by bison, and had been last grazed by cattle five years prior 
to sampling. 

In the summer of 2005, a single haphazardly placed 
3 3 3 metre plot was divided into 36 0.5 3 0.5 m grid 
cells. Every live stem was identified to species and mapped 
to the nearest centimetre providing a detailed map of the 
distribution of 1889 stems from 29 species. For the simula-
tions, we sampled the map with replacement using randomly 
placed square virtual quadrats at scales ranging from 0.1 m2 
(10 3 10 cm) to 2.25 m2 (1.5 3 1.5 m). Fifty randomly 
placed virtual quadrats were sampled at each scale as above. 

Case study 4: tropical forest

Our tropical forest case study system was the Barro Colorado 
Island (BCI) forest dynamics plot in Panama (9°15′N, 
–79°85′W) (Condit 1998, Hubbell et al. 1999). The system 
is a species-rich old-growth tropical forest in a highly sea-
sonal environment with 2500 mm of precipitation annually, 
a four month dry season, and modest topographic variation. 

The data set was the publically available 2010 census 
(census 7) of trees 1 cm diameter at breast height (DBH) 
(Condit et al. 2012). BCI is in the same network of forest 
plots as Scotty Creek and the details of the sampling design 
and protocol are the same (Condit 1998) except that BCI is 
a 50 ha plot (500 3 1000 m). As in the boreal forest, every 
live stem 1 cm DBH and taller than 1.3 m, was identified 
to species and mapped to the nearest cm within the 50-ha 
plot. As above, this provided us with a detailed individual 
level map of the mature forest community from 223  176 
individual trees, for 301 species. For the simulations, we 
sampled the map with replacement using randomly placed 
square virtual quadrats at scales ranging from 0.0025 ha  
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(5 3 5 m) to 25 ha (500 3 500 m). Fifty randomly placed 
virtual quadrats were sampled at each scale as above.

Data deposition

Data available from the Dryad Digital Repository:  http://
dx.doi.org/10.5061/dryad.5f876  (McNickle  et  al. 2017) 
and Smithsonian Tropical Forest Network (Scotty and 
BCI data). All code used in this manuscript is archived at: 
 https://github.com/ggmcnickle/CScore .

Results

Numerical simulations

Not surprisingly, in all simulations, there was a hump-
shaped Cn-score–area relationship, though at z = 0.1 the 
peak was shifted nearly to zero (Fig. 1). The exponent, z, 
changes the slope of the SAR in log–log space and thus 
the rate at which the matrix fills with increasing sample 
unit scale. Consequently, increasing z moves the peak of 

the Cn-score–area relationship to larger and larger scales. 
The constant, B, changes the y-intercept of the SAR in 
log–log space, and consequently has no effect on the Cn-
score–area relationship. The constant B does, however, 
change the step-like appearance of the Cn-score–area rela-
tionship that arises because species richness is an integer, 
and so lower gamma diversity reduces the smoothness of 
the relationship. Effect size is undefined for the numerical 
simulations since the simulated communities are already 
null communities. 

Empirical – species by area relationships 

The exponent z of the species area curves (rate of species 
accumulation) was lowest in the species rich tropical forest 
(z = 0.18), and was similar in the other three communities (z 
approximately 0.3) (Fig. 2). The BCI z-value is higher than 
the previously published value of 0.146 (Condit et al. 2005), 
likely due to differences in the plot selection approaches. As 
expected, the intercept B increased for the more species rich 
communities (Table 1). The species area curve sampling for 
the tundra often included plots with no plants even at larger 
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Figure 1. Effects of changing species–area relationship parameters on C-score–area relationships (left panels), the species area–relationships 
are also shown (right side). In panels (a) and (b) z was varied as indicated in the figure legend and B was held constant at B = 25. In panels 
(c) and (d) B was varied as indicated in the figure legend and z was held constant at z = 0.25.
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sampling areas, highlighting the patchy nature of that com-
munity, and resulting in high error around the fitted curve. 

Empirical – Cn-score by area relationships 

The fixed-fixed and fixed-equiprobable null models produced 
similar results (Supplementary material Appendix Fig. A1). 
Since there were no major differences in conclusions from 
either null model, in what follows we present and discuss the 
more conservative fixed-fixed null model only. 

We expect the raw Cn-score by area relationships to be 
hump shaped. Indeed, all case studies, except the boreal for-
est, had hump shaped Cn-score–area relationships for both 
observed and expected null Cn-scores (Fig. 3). The maxi-
mum Cn-score (the scale at which species are most segregated 
in their co-occurrence) was reached in the tundra at 0.3 m2 
(0.54 3 0.54 m quadrats) and in the grassland community 

at 1.5 m2 (1.2 3 1.2 m quadrats). The maximum Cn-score in 
the boreal forest was not reached at the maximum sampling 
scale of 1.4 ha, while in the tropical forest, maximum Cn-
score was observed at 0.26 ha (71 3 71 m quadrats) (Fig. 3). 
In all cases the maximum observed Cn-score was significantly 
different from the expected null Cn-score. 

This significance of the observed Cn-scores are most 
clearly seen from, the standardized effect size, which indicates 
that the observed Cn-score is more segregated than would 
be expected by chance regardless of the absolute value of the  
Cn-score. Unlike the C-score–area relationship which we 
expect to be hump shaped, we have no expectation about the 
shape of the effect size–area relationship. Indeed, these curves 
took on a variety of complex shapes (Fig. 4). The minimum 
scale that the Cn-score effect size was significantly different 
from random was at 0.1 m2 in the tundra, 0.2 m2 in grassland, 
and 0.2 ha in both the boreal and tropical forest (Fig. 4). 
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Figure 2. Species area curves for (a) tundra, (b) boreal forest, (c) grassland and (d) tropical forest sites. Darker symbols indicate larger num-
bers of overlapping datapoints. SE is the standard error of the fitted non-linear model (since R2 is undefined for non-linear regression): SE 
represents the average distance between the data and the regression line in the units of the y-axis. 
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Only the tundra and grassland data sets were sampled at a 
sufficient spatial scale to estimate the maximum effect size 
which occurred at 0.2 m2 and 1.5 m2 respectively (Fig. 4a, c). 
Neither forest community reached a maximum effect size, 
including the tropical forest where we were able to sample 
25 ha quadrats, which strikes us as remarkable (Fig. 4b, d). 

Discussion

It is well known that estimates of diversity vary with the 
spatial scale of plots and the sampling effort of a survey 
(Gotelli and Colwell 2001, Chase and Knight 2013). We 
have shown here via numerical simulation that the relation-

Table 1. Summary of empirical descriptions of the communities.

 Communities

Parameter Tundra Boreal forest Grassland Tropical forest

Gamma diversity 15 11 29 311
Minimum community richness (B) 4.87 5.84 13.55 160.71
rate of species accumulation (z) 0.29 0.33 0.25 0.18
Area of max. C-score 0.3 m2 – 1.5 m2 0.26 ha
Min area significant effect size 0.1 m2 0.2 ha 0.2 m2 0.2 ha
Area of max. effect size 0.2 m2 – 1.5 m2 –
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Figure 3. Observed and expected Cn score–area relationships for (a) tundra, (b) boreal forest, (c) grassland and (d) tropical forest sites. Lines 
are fit using a non-parametric loess function, and grey zones indicate 1 SE around the line. These results are from the fixed-fixed null model 
only.
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ship between species richness and area sample unit scale 
can influence measures of species co-occurrence such as the 
Cn-score (Fig. 1). This happens because the accumulation 
of species with increasing area necessarily produces a Cn-
score–area relationship which is hump shaped. This is nei-
ther novel nor surprising as it has previously been shown 
that varying matrix fill causes such a hump-shaped relation-
ship with C-score (Ulrich and Gotelli 2013, Ulrich  et  al. 
2017). Many mechanisms can lead to varying matrix fill; 
Ulrich  et  al. (2017) for example, have shown that chang-
ing levels of beta diversity (species turnover) across gradi-
ents of gamma diversity (regional species pool size) can 
produce similar hump-shaped C-score patterns. Here we 
have shown that within a single community varying matrix 
fill tied to the species–area relationship can also generate a 
general Cn-score–area relationship. Specifically, we show that 
intermediate plot sizes with intermediate levels of matrix fill 

(proportion of 1s in the matrix) will produce maximum Cn-
scores, even in randomly assembled communities (Fig. 1). 
Importantly, our four case studies show that the scale of the 
intermediate plot size in real ecological communities cannot 
be predicted a priori, but represents the scale at which there 
is the largest signal of negative species co-occurrence. The 
identification of the scale with the maximum statistically sig-
nificant level of negative species co-occurrence is the scale 
at which community ecologists are most likely to detect the 
mechanisms that structure communities. While we illustrate 
this phenomenon for the Cn-score metric, this observation is 
likely to apply more broadly across many approaches to the 
study of species co-occurrence. 

Based on this linkage between the species-area relation-
ship and co-occurrence, we argue that the measurement of 
negative co-occurrence at any one arbitrary spatial scale does 
not provide complete evidence about how communities are 
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Figure 4. Standardized effect size–area relationships for (a) tundra, (b) boreal forest, (c) grassland and (d) tropical forest sites. Values above 
the horizontal red line are statistically significant. Lines are fit using a non-parametric loess function, and grey zones indicate 1 SE around 
the line. These results are from the fixed-fixed null model only. 
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structured. Many have pointed out that studies of biodiversity 
are highly scale dependent and that traditional standardised 
sampling protocols are often not enough to fully study pat-
terns of biodiversity (Gotelli and Colwell 2001, Chase and 
Knight 2013). Indeed, in all of our empirical case studies, we 
found scales at which Cn-scores were not different from what 
was expected by chance under the null model (implying 
communities that are not strongly structured with respect 
to negative co-occurrence) and also scales with scores greater 
than expected (implying that scale-dependent mechanisms 
are driving co-occurrence patterns) (Fig. 4). The scales at 
which significant negative co-occurrence was observed 
appear to depend, in part, on the scale of the organisms in 
the system, and potentially on the relationship between abi-
otic variability and mean organism size. The smaller size of 
grassland and tundra plants corresponded to a smaller scale 
of structure compared to the large scale for boreal and tropi-
cal trees. Importantly, the plot size where we began to see 
evidence of significant negative co-occurrence was typically 
quite large compared to standard sampling units (Table 1). 
Having identified the scales at which significant structure is 
encountered, it becomes much more feasible to undertake 
empirical studies to determine whether mechanisms such as 
species interactions, abiotic drivers, or habitat filtering are 
the key drivers of patterns at these scales. A first step in such 
studies may be to use a pairwise analysis approach such as 
Blois et al. (2014) to identify species pairs with significant 
co-occurrence patterns at a given scale, and to partition geo-
graphic distance effects into those attributable to environ-
mental drivers and other factors (e.g. dispersal distance).

In the grassland and tundra communities, the minimum 
scale of significant Cn-scores and the scale of the maximum 
observed C-score could conceivably match the scale at which 
root systems are able to directly interact (Schenk et al. 1999, 
Frank  et  al. 2010, Lamb  et  al. 2016). Further, many spe-
cies in the grassland and arctic tundra systems are clonal. 
Interconnected clones may spread over areas equivalent to 
the scales of 0.2–1.5 m2 detected by our analyses, suggest-
ing that shoot and root competition at the scale of clones 
might also be an important factor structuring these commu-
nities (de Kroon et al. 1992, Wildová 2004). Thus the scales 
of community structure detected in the grassland are con-
sistent with biotic mechanisms of species segregation such 
as direct plant–plant competition for soil resources among 
and between individuals. Alternatively, the geospatial pat-
terns of important environmental factors drive small-scale 
species segregation. At the tundra site, for example, soil 
moisture has a 1.6 m spatial range (Banerjee et al. 2011a), 
tundra microbial communities often have a range of ~ 2 m 
(Banerjee et al. 2011b), and nutrient cycling a range between 
2 and 4 m (Banerjee and Siciliano 2012a, b). The potential 
role of environmental or competitive mechanisms structur-
ing co-occurrence patterns should not be surprising, as there 
is evidence from a variety of ecosystems that both biotic 
and abiotic factors can drive species co-occurrence patterns 
(Dullinger et al. 2007, Reitalu et al. 2008). 

In contrast to the grassland and tundra systems, commu-
nity structure at the scale of 0.26 to 1.5 hectares in the 
boreal and tropical forests is unlikely to be driven by resource 
competition. At these scales, individual root systems would 
require a radius of ~ 35 m (tropical) and more than 150 m 

(boreal) for the outer root tips of two trees to directly inter-
act. Common mycorrhizal networks (CMN) could extend 
further than roots, as trees in a temperate coniferous forest 
20 m apart can be connected (Beiler et al. 2015), but there is 
no evidence that CMNs routinely connect individuals across 
70 m or more. Such large-scale patterns of co-occurrence 
could be driven through a variety of ecological mechanisms 
including the dispersal of seeds and distribution of differ-
ent regeneration niches, herbivory at the scales at which 
large animals move such as the Janzen–Connell effect, or 
pathogen impacts on aggregated populations (Janzen 1970, 
Connell 1971, Grubb 1977, Condit et al. 2000). Given that 
species richness of the tropical forest is not fully captured in 
the 50 ha BCI plot (Condit et al. 1996, 2005), there is also 
the possibility larger-scale biotic driven patterns could exist. 
Finally, as in the tundra and grassland systems, these forest 
community patterns could be driven by the scale of abiotic 
effects (Condit  et  al. 2000). At the boreal forest site, the 
landscape is composed of large repeating plant community 
units driven largely by hydrology and permafrost dynamics 
with large areas (peat plateaux) dominated by black spruce 
and wetter and more nutrient-rich fens dominated by larch 
(Camill 1999). The maximum sampling scale of 1.4 ha was 
likely not large enough to capture these large scale hydrologi-
cal features that drive species distributions.

One implication of these results is that the failure of 
many co-occurrence studies to find evidence for significant 
co-occurrence patterns (Götzenberger  et  al. 2012, García-
Baquero and Crujeiras 2015) may simply be due to sampling 
at an arbitrary spatial scale which is different from the scale 
at which the community is structured. The analysis pre-
sented here suggests that previous studies finding weakly or 
unstructured communities may not have used a sample spa-
tial scale suitable to the community and its structuring pro-
cesses. Because we may not have been looking for evidence at 
the spatial scales where processes such competitive exclusion 
occurs we could erroneously conclude that such mechanisms 
are not important. For example, our own past study of com-
petition in the grassland system used as a case study here 
found limited evidence for competition structuring commu-
nity diversity (Lamb and Cahill 2008). That study, however, 
measured the community at 0.25 m2, and the analysis here 
shows that we might not always expect to find evidence of 
competitive exclusion at such a small scale (Fig. 4b). 

Our results suggest that a multi-scale sampling approach 
will be an important first step in studies examining species 
co-occurrence. Our results also suggest that negative co-
occurrence is not a characteristic of communities, implying 
that sufficient sampling does not bring one to a fixed com-
munity measure of negative co-occurrence, as is the case with 
other community metrics like richness and evenness. Esti-
mating the Cn-score–area relationship can therefore provide 
a method to identify the scales at which communities are 
most strongly structured, and hence the scales at which the 
ecological or abiotic processes structuring those communi-
ties are the strongest. Identifying the scale provides clues as 
to the mechanisms that are most important in that system 
and can guide subsequent experimentation. Our simulations 
suggest that this hump shaped Cn-score–area relationship 
will be universal, and our four community analyses support 
this view. It remains to be seen if this is a general feature of 
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the Cn-score–area relationship, or if this was particular to the 
four case studies included in this study. A multi-modal Cn-
score–area relationship, for example, would imply multiple 
mechanisms operating at multiple scales. 

 In conclusion, we have shown here that the species-area 
relationship naturally produces a C-score–area relationship 
(Fig. 1). By analyzing four ecologically different case stud-
ies from arctic tundra to tropical forest, we show that the 
dominant scales of structure in these systems were surpris-
ingly large relative to plant body system size in these systems. 
It has long been recognized that estimates of diversity are 
influenced by field sampling choices, but it has been difficult 
to make general suggestions about how one should design 
studies to account for this. The Cn-score–area relationship 
can provide guidance for identifying the spatial scales where 
species interactions influence community structure, it can 
also help develop hypotheses about the mechanisms that 
structure communities, and we believe provides a next step 
towards ecological understanding and unifying a wide array 
of otherwise contradictory studies. 
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