Lake Michigan Fish and Ecosystems

Epidemiology of Fisheries and Invasions

Richard Condit

Rare Nest Gallery Alan Sue Exhibition 7 August 2019

Curious entities reduced to counts

Outline

Fragile ecosystems

Contributing characteristics

Islands

Small area

Recent

Isolated and dispersal-limited

Few species

Simplified ecosystems

• Fresh water ecosystems

Fragile Hawaii

Fragile Hawaii

Recently formed ecosystem

Lake whitefish

Lake whitefish

Lake whitefish

The important native fishery

- Bottom feeder
- Deep water spawner
- Persists despite the ecosystem alterations
- Commercial fishery
 - Sustainable for over a century \$6 million current annual value (Lake Michigan)

Lake trout

Lake trout

The native great lakes prize

- Top predator of open water
- Stream or shore spawner
- Dominated commercial fishery 1870s-1940s
- Favored prey of the lamprey
- No longer reproducing but restoration is intended

Chinook salmon

Chinook salmon

A Pacific salmon part of huge marine fishery

- Top predator of open water
- Stream spawner
- Stocked in Great Lakes from 1970
 - Chinook is the cost effective of several stocked species Some reproduction but not viable without stocking
- Control alewife via predation
- The industry
 - ~ 10 million young fish per year in L. Michigan
 - \sim \$6 million cost
 - \sim \$1 billion value of sports fishery across great lakes

Primitive North Atlantic fish that ascends rivers to breed

- Parasite that decimated trout
- Stream spawner
- Invaded lower great lakes in 1930s

Welland Canal

Always native to Lake Ontario?

Controlled by poisoning of larvae

Reduced by 1970

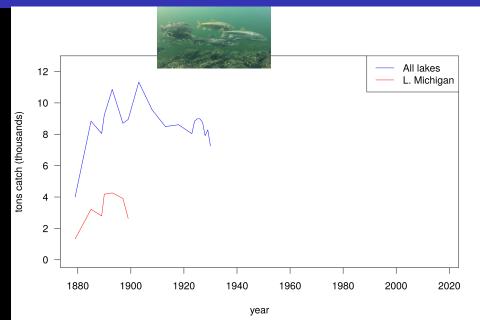
Ongoing poisoning costs \sim \$20 million per year

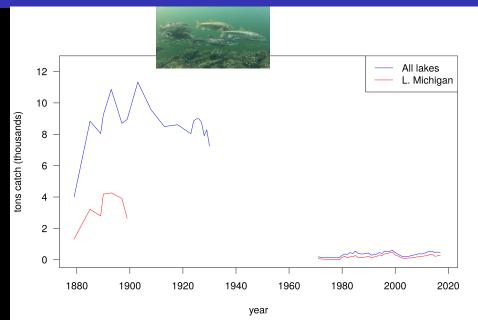
Alewife

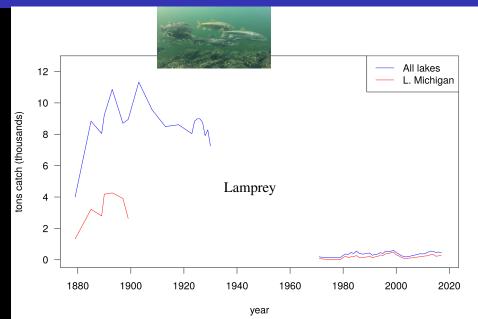
Alewife

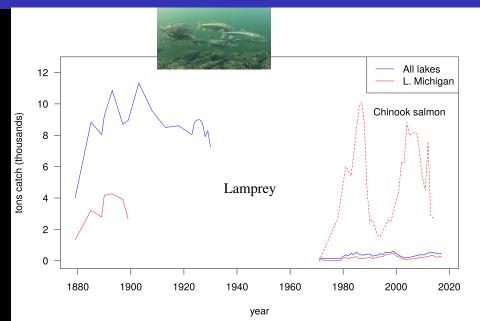
Coastal North Atlantic fish that enters rivers

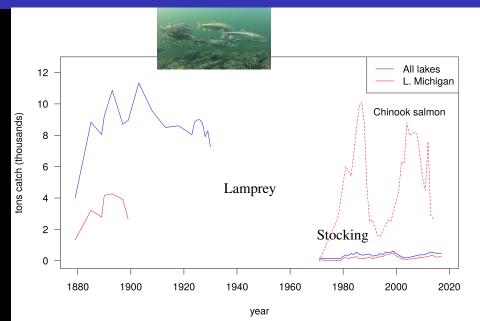
- Plankton feeder of open water
- Invaded lower great lakes in 1950s

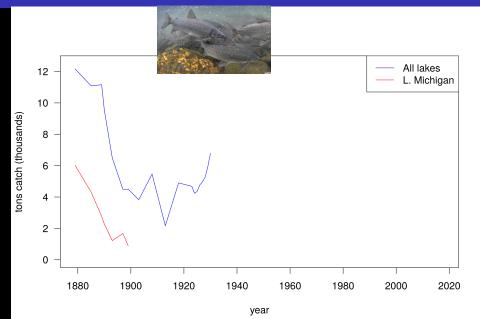

Welland Canal


After trout were reduced by lamprey?


- Spread rapidly then a die-back littered beaches in 1960s
- Controlled by Pacific salmon after 1970 Predator on young trout and salmon


Favored food of large trout and salmon





Lake whitefish commercial catch

Lake whitefish commercial catch

Dreissenids

Zebra and Quagga mussels

- Invaders from Europe Ship ballast Lake St. Clair 1988
- Enormous increase through L. Michigan 2004-2010
- Great changes to food web
 Clearer water, less plankton in food column
 More production at bottom
- No great impact on fish populations thus far

Conclusions

Economics of fisheries

Cost of management much below perceived economic payoff

\$6 million stocking salmon (L. Michigan only)

\$20 million poisoning lamprey (Great Lakes)

\$18 million commercial value (Great Lakes)

\$1 billion sports value (Great Lakes)

Value is mostly recreational

Conclusions

Fragile ecosystem of Lake Michigan

- Managed by poison and stocking
- Impacted by agriculture, mussels
- Invasive species are both feared and valued
- Simple and vulnerable system

Salmon-alewife interaction: few species and easy to manage Enormous invasion of mussels alters entire food web Missing species so lakes are exceedingly invasible?